
Manticore Search Documentation
Release 2.6.1

The Manticore Search team

Nov 07, 2018

Manticore Documentation

1 Introduction 1
1.1 About . 1
1.2 Manticore features . 1
1.3 Where to get Manticore . 2
1.4 License . 3
1.5 Credits . 3

2 Installation 5
2.1 Installing Manticore packages on Debian and Ubuntu . 5
2.2 Installing Manticore packages on RedHat and CentOS . 6
2.3 Installing Manticore on Windows . 7
2.4 Running Manticore Search in a Docker Container . 7
2.5 Compiling Manticore from source . 8
2.6 Quick Manticore usage tour . 11

3 Indexing 15
3.1 Data sources . 15
3.2 Full-text fields . 15
3.3 Attributes . 16
3.4 MVA (multi-valued attributes) . 17
3.5 Indexes . 18
3.6 Restrictions on the source data . 19
3.7 Charsets, case folding, translation tables, and replacement rules . 19
3.8 SQL data sources (MySQL, PostgreSQL) . 19
3.9 xmlpipe2 data source . 20
3.10 TSV/CSV data source . 22
3.11 Live index updates . 23
3.12 Delta index updates . 23
3.13 Index merging . 25

4 Real-time indexes 27
4.1 RT indexes overview . 27
4.2 Known caveats with RT indexes . 29
4.3 RT index internals . 29
4.4 Binary logging . 30

5 Searching 31

i

5.1 Matching modes . 31
5.2 Boolean query syntax . 32
5.3 Extended query syntax . 33
5.4 Search results ranking . 37
5.5 Expressions, functions, and operators . 43
5.6 Sorting modes . 52
5.7 Grouping (clustering) search results . 53
5.8 Distributed searching . 54
5.9 Query log formats . 55
5.10 MySQL protocol support and SphinxQL . 57
5.11 Multi-queries . 57
5.12 Collations . 59
5.13 Query cache . 60
5.14 MySQL storage engine (SphinxSE) . 61
5.15 Percolate query . 68

6 Extending 73
6.1 UDFs (User Defined Functions) . 73
6.2 Plugins . 76
6.3 Ranker plugins . 77

7 Command line tools reference 79
7.1 indexer command reference . 79
7.2 indextool command reference . 82
7.3 searchd command reference . 83
7.4 spelldump command reference . 86
7.5 wordbreaker command reference . 87

8 SphinxQL reference 89
8.1 ALTER syntax . 89
8.2 ATTACH INDEX syntax . 90
8.3 BEGIN, COMMIT, and ROLLBACK syntax . 92
8.4 BEGIN syntax . 92
8.5 CALL KEYWORDS syntax . 92
8.6 CALL PQ syntax . 93
8.7 CALL QSUGGEST syntax . 94
8.8 CALL SNIPPETS syntax . 94
8.9 CALL SUGGEST syntax . 95
8.10 Comment syntax . 95
8.11 CREATE FUNCTION syntax . 95
8.12 CREATE PLUGIN syntax . 96
8.13 DELETE syntax . 96
8.14 DESCRIBE syntax . 97
8.15 DROP FUNCTION syntax . 98
8.16 DROP PLUGIN syntax . 98
8.17 FLUSH ATTRIBUTES syntax . 98
8.18 FLUSH HOSTNAMES syntax . 98
8.19 FLUSH LOGS syntax . 99
8.20 FLUSH RAMCHUNK syntax . 99
8.21 FLUSH RTINDEX syntax . 99
8.22 INSERT and REPLACE syntax . 100
8.23 List of SphinxQL reserved keywords . 100
8.24 Multi-statement queries . 100
8.25 OPTIMIZE INDEX syntax . 101

ii

8.26 RELOAD INDEX syntax . 102
8.27 RELOAD INDEXES syntax . 102
8.28 RELOAD PLUGINS syntax . 102
8.29 REPLACE syntax . 103
8.30 ROLLBACK syntax . 103
8.31 SELECT syntax . 103
8.32 SELECT @@system_variable syntax . 111
8.33 SET syntax . 111
8.34 SET TRANSACTION syntax . 113
8.35 SHOW AGENT STATUS . 113
8.36 SHOW CHARACTER SET syntax . 115
8.37 SHOW COLLATION syntax . 116
8.38 SHOW DATABASES syntax . 116
8.39 SHOW INDEX SETTINGS syntax . 116
8.40 SHOW INDEX STATUS syntax . 116
8.41 SHOW META syntax . 117
8.42 SHOW PLAN syntax . 118
8.43 SHOW PLUGINS syntax . 119
8.44 SHOW PROFILE syntax . 119
8.45 SHOW STATUS syntax . 121
8.46 SHOW TABLES syntax . 122
8.47 SHOW THREADS syntax . 122
8.48 SHOW VARIABLES syntax . 123
8.49 SHOW WARNINGS syntax . 123
8.50 TRUNCATE RTINDEX syntax . 124
8.51 UPDATE syntax . 124

9 HTTP API reference 127
9.1 /search API . 127
9.2 /sql API . 128
9.3 /json API . 129

10 API reference 151
10.1 General API functions . 151
10.2 General query settings . 153
10.3 Full-text search query settings . 154
10.4 Result set filtering settings . 156
10.5 GROUP BY settings . 158
10.6 Querying . 159
10.7 Additional functionality . 161
10.8 Persistent connections . 165

11 Configuration reference 167
11.1 Common section configuration options . 167
11.2 Data source configuration options . 169
11.3 Index configuration options . 183
11.4 indexer program configuration options . 214
11.5 searchd program configuration options . 216

12 Reporting bugs 233
12.1 Bug-tracker . 233
12.2 Crashes . 233
12.3 Uploading your data . 234

13 Release notes 235

iii

13.1 Version 2.6.1 GA, 26 January 2018 . 235
13.2 Version 2.6.0, 29 December 2017 . 236
13.3 Version 2.5.1, 23 November 2017 . 236
13.4 Version 2.4.1 GA, 16 October 2017 . 237
13.5 Version 2.3.3, 06 July 2017 . 238

iv

CHAPTER 1

Introduction

1.1 About

Manticore Search is a full-text search engine, publicly distributed under GPL version 2, forked from 2.3 branch of
open-source search engine Sphinx search.

Technically, Manticore is a standalone software package provides fast and relevant full-text search functionality to
client applications. It was specially designed to integrate well with SQL databases storing the data, and to be easily
accessed by scripting languages. However, Manticore does not depend on nor require any specific database to function.

Applications can access Manticore search daemon (searchd) using any of the following access methods: - Manti-
core own implementation of MySQL network protocol (using a small SQL subset called SphinxQL, this is recom-
mended way) - native search API (SphinxAPI) - HTTP protocol - via MySQL server with a pluggable storage engine
(SphinxSE).

Official native SphinxAPI implementations for PHP, Perl, Python, Ruby and Java are included within the distribution
package. API is very lightweight so porting it to a new language is known to take a few hours or days. Third party
API ports and plugins exist for Perl, C#, Haskell, Ruby-on-Rails, and possibly other languages and frameworks.

Manticore supports two different indexing backends: “disk” index backend, and “realtime” (RT) index backend. Disk
indexes support online full-text index rebuilds, but online updates can only be done on non-text (attribute) data. RT
indexes additionally allow for online full-text index updates.

Data can be loaded into disk indexes using a so-called data source. Built-in sources can fetch data directly from
MySQL, PostgreSQL, MSSQL, ODBC compliant database (Oracle, etc) or from a pipe in TSV or XML format.
Adding new data sources drivers (eg. to natively support other DBMSes) is designed to be as easy as possible. RT
indexes can only be populated using SphinxQL.

1.2 Manticore features

Key Manticore features are:

• high indexing and searching performance;

1

Manticore Search Documentation, Release 2.6.1

• advanced indexing and querying tools (flexible and feature-rich text tokenizer, querying language, several dif-
ferent ranking modes, etc);

• advanced result set post-processing (SELECT with expressions, WHERE, ORDER BY, GROUP BY, HAVING
etc over text search results);

• proven scalability up to billions of documents, terabytes of data, and thousands of queries per second;

• easy integration with SQL and XML data sources, and SphinxQL, SphinxAPI, or SphinxSE search interfaces;

• easy scaling with distributed searches.

To expand a bit, Manticore:

• has high indexing speed (upto 10-15 MB/sec per core on an internal benchmark);

• has high search speed (upto 150-250 queries/sec per core against 1,000,000 documents, 1.2 GB of data on an
internal benchmark);

• has high scalability (biggest known cluster indexes over 3,000,000,000 documents, and busiest one peaks over
50,000,000 queries/day);

• provides good relevance ranking through combination of phrase proximity ranking and statistical (BM25) rank-
ing;

• provides distributed searching capabilities;

• provides prospective searches (percolate queries)

• provides document excerpts (snippets) generation;

• provides searching from within application with SphinxQL or SphinxAPI interfaces, and from within MySQL
with pluggable SphinxSE storage engine;

• supports boolean, phrase, word proximity and other types of queries;

• supports multiple full-text fields per document (upto 32 by default);

• supports multiple additional attributes per document (ie. groups, timestamps, etc);

• supports stopwords;

• supports morphological word forms dictionaries;

• supports tokenizing exceptions;

• supports UTF-8 encoding;

• supports stemming (stemmers for English, Russian, Czech and Arabic are built-in; and stemmers for French,
Spanish, Portuguese, Italian, Romanian, German, Dutch, Swedish, Norwegian, Danish, Finnish, Hungarian, are
available by building third party libstemmer library);

• supports MySQL natively (all types of tables, including MyISAM, InnoDB, NDB, Archive, etc are supported);

• supports PostgreSQL natively;

• supports ODBC compliant databases (MS SQL, Oracle, etc) natively;

• . . . has 50+ other features not listed here, refer configuration manual!

1.3 Where to get Manticore

Manticore is available through its official Web site at http://manticoresearch.com/.

Currently, Manticore distribution tarball includes the following software:

2 Chapter 1. Introduction

http://snowball.tartarus.org/
http://manticoresearch.com/

Manticore Search Documentation, Release 2.6.1

• indexer: an utility which creates fulltext indexes;

• searchd: a daemon which enables external software (eg. Web applications) to search through fulltext indexes;

• sphinxapi: a set of searchd client API libraries for popular Web scripting languages (PHP, Python, Perl,
Ruby).

• spelldump: a simple command-line tool to extract the items from an ispell or MySpell (as bundled with
OpenOffice) format dictionary to help customize your index, for use with wordforms.

• indextool: an utility to dump miscellaneous debug information about the index

• wordbreaker: an utility to break down compound words into separate words

1.4 License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version. See COPYING file for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

1.5 Credits

Manticore is derived from Sphinx search engine created by Andrew Aksyonoff. More details about people involved in
Sphinx development can be found on this page: http://sphinxsearch.com/docs/devel.html#credits.

Manticore is developed and maintained by Manticore Software Ltd. Current team (in alphabetical order):

• Adrian Nuta

• Alexey Vinogradov

• Gloria Vinogradova

• Ilya Kuznetsov

• Mindaugas Zukas

• Sergey Nikolaev

• Stanislav Klinov

1.4. License 3

http://sphinxsearch.com/docs/devel.html#credits

Manticore Search Documentation, Release 2.6.1

4 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Installing Manticore packages on Debian and Ubuntu

Supported releases:

• Debian

– 7.0 (wheezy)

– 8.0 (jessie)

– 9.0 (stretch)

• Ubuntu

– 14.04 LTS (trusty)

– 16.05 LTS (xenial)

Supported platforms:

• x86

• x86_64

You can install Manticore with command:

$ wget https://github.com/manticoresoftware/manticore/releases/download/2.4.1/
→˓manticore_2.4.1-171017-3b31a97-release-stemmer.jessie_amd64-bin.deb
$ sudo dpkg -i manticore_2.4.1-171017-3b31a97-release-stemmer.jessie_amd64-bin.deb

Manticore requires no extra libraries to be installed on Debian/Ubuntu. However if you plan to use ‘indexer’ tool to
create indexes from different sources, you’ll need to install appropriate client libraries. To know what exactly libraries,
run indexer tool from Manticore and look at the top of it’s output:

$ indexer
Manticore 2.4.1 4258276@171019 id64-beta
Copyright (c) 2001-2016, Andrew Aksyonoff

(continues on next page)

5

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

Copyright (c) 2008-2016, Sphinx Technologies Inc (http://sphinxsearch.com)
Copyright (c) 2017, Manticore Software LTD (http://manticoresearch.com)

Built by gcc/clang v 6.3.0,

Built on Linux d2a57137d4f5 4.8.0-45-generic #48~16.04.1-Ubuntu SMP Fri Mar 24
→˓12:46:56 UTC 2017 x86_64 GNU/Linux
Configured by CMake with these definitions: -DCMAKE_BUILD_TYPE=RelWithDebInfo -DDL_
→˓UNIXODBC=1 -DUNIXODBC_LIB=libodbc.so.2 -DDL_EXPAT=1 -DEXPAT_LIB=libexpat.so.1 -DDL_
→˓MYSQL=1 -DMYSQL_LIB=libmariadbclient.so.18 -DMYSQL_CONFIG_EXECUTABLE=/usr/bin/mysql_
→˓config -DDL_PGSQL=1 -DPGSQL_LIB=libpq.so.5 -DSPLIT_SYMBOLS=ON -DUSE_BISON=ON -DUSE_
→˓FLEX=ON -DUSE_SYSLOG=1 -DWITH_EXPAT=ON -DWITH_ICONV=ON -DWITH_MYSQL=ON -DWITH_
→˓ODBC=ON -DWITH_PGSQL=ON -DWITH_RE2=ON -DWITH_STEMMER=ON -DWITH_ZLIB=ON

Here you can see mentions of libodbc.so.2, libexpat.so.1, libmariadbclient.so.18, and libpq.so.5.

Below is the reference table with list of all client libraries for different debian/ubuntu distributions:

Distr Mysql PostgresQL Xmlpipe Unixodbc
trusty libmysqlclient.so.18 libpq.so.5 libexpat.so.1 libodbc.so.1
xenial libmysqlclient.so.20 libpq.so.5 libexpat.so.1 libodbc.so.2
wheezy libmysqlclient.so.18 libpq.so.5 libexpat.so.1 libodbc.so.1
jessie libmysqlclient.so.18 libpq.so.5 libexpat.so.1 libodbc.so.2
stretch libmariadbclient.so.18 libpq.so.5 libexpat.so.1 libodbc.so.2

To find the packages which provide the libraries you can use, for example apt-file:

$ apt-file find libmysqlclient.so.20
libmysqlclient20: /usr/lib/x86_64-linux-gnu/libmysqlclient.so.20
libmysqlclient20: /usr/lib/x86_64-linux-gnu/libmysqlclient.so.20.2.0
libmysqlclient20: /usr/lib/x86_64-linux-gnu/libmysqlclient.so.20.3.6

Note, that you need only libs for types of sources you’re going to use. So if you plan to make indexes only from mysql
source, then install only lib for mysql client (in case above - libmysqlclient20).

Finally install necessary packages:

$ sudo apt-get install libmysqlclient20 libodbc1 libpq5 libexpat1

If you aren’t going to use indexer tool at all, you don’t need find and install any libraries.

After preparing configuration file (see Quick tour), you can start searchd daemon:

$ systemctl manticore start

2.2 Installing Manticore packages on RedHat and CentOS

Supported releases:

• CentOS 6 and RHEL 6

• CentOS 7 and RHEL 7

Supported platforms:

• x86

6 Chapter 2. Installation

Manticore Search Documentation, Release 2.6.1

• x86_64

Manticore requires no extra libraries to be installed on RedHat/CentOS. However if you plan to use ‘indexer’ tool to
create indexes from different sources, you’ll need to install appropriate client libraries. Use yum to download and
install these dependencies:

$ yum install mysql-libs postgresql-libs expat unixODBC

Note, that you need only libs for types of sources you’re going to use. So if you plan to make indexes only from mysql
source, then installing ‘mysql-libs’ will be enough. If you don’t going to use ‘indexer’ tool at all, you don’t need to
install these packages. Download RedHat RPM from Manticore website and install it:

$ wget https://github.com/manticoresoftware/manticore/releases/download/2.4.1/
→˓manticore-2.4.1-171017-3b31a97-release-stemmer-rhel7-bin.rpm
$ rpm -Uhv manticore-2.4.1-171017-3b31a97-release-stemmer-rhel7-bin.rpm

After preparing configuration file (see Quick tour), you can start searchd daemon:

$ systemctl searchd start

2.3 Installing Manticore on Windows

To install on Windows, you need to download the zip package and unpack it first.

cd C:\Manticore
unzip manticore-2.4.1-171017-3b31a97-release-pgsql-stemmer-x64-bin.zip

Edit the contents of sphinx.conf.in - specifically entries relating to @CONFDIR@ - to paths suitable for your system.

Install the searchd system as a Windows service:

C:\Manticore\bin> C:\Manticore\bin\searchd --install --config C:\Manticore\sphinx.
→˓conf.in --servicename Manticore

The searchd service will now be listed in the Services panel within the Management Console, available from
Administrative Tools. It will not have been started, as you will need to configure it and build your indexes
with indexer before starting the service. A guide to do this can be found under Quick tour.

2.4 Running Manticore Search in a Docker Container

Docker images of Manticore Search are hosted publicly on Docker Hub at https://hub.docker.com/r/manticoresearch/
manticore/.

For more information about using Docker, see the Docker Docs <https://docs.docker.com/>.

The searchd daemon runs in nodetach mode inside the container. Default configuration includes includes a simple
Real-Time index and listen on the default ports (9306 for SphinxQL and 9312 for SphinxAPI).

The image comes with MySQL and PostgreSQL client libraries for indexing data from these databases.

2.4.1 Starting a Manticore Search instance in a container

To start a container running the latest release of Manticore Search run:

2.3. Installing Manticore on Windows 7

https://hub.docker.com/r/manticoresearch/manticore/
https://hub.docker.com/r/manticoresearch/manticore/

Manticore Search Documentation, Release 2.6.1

docker run --name manticore -p 9306:9306 -d manticoresearch/manticore

Operations with utility tools can be made with docker exec command:

docker exec -it manticore indexer --all --rotate

To stop the Manticore Search container you can simply do:

docker stop manticore

Please note that any indexed data or configuration change made is lost if the container is stopped. For persistence, you
need to mount the configuration and data folders.

2.4.2 Mounting points

The configuration folder inside the image is the usual /etc/sphinxseach. Index files are located at
/var/lib/manticore/data and logs at /var/lib/manticore/log. For persistence, mount these points to your local folders.

docker run --name manticore -v /path/to/config/:/etc/sphinxsearch/ -v /path/to/data/:/
→˓var/lib/manticore/data -v /path/to/logs/:/var/lib/manticore/log -p 9306:9306 -d
→˓manticoresearch/manticore

2.5 Compiling Manticore from source

2.5.1 Required tools

• a working compiler

– on Linux - GNU gcc (4.7.2 and above) or clang can be used

– on Windows - Microsoft Visual Studio 2015 and above (community edition is enough)

– on Mac OS - XCode

• cmake - used on all plaftorms (version 2.8 or above)

2.5.2 Optional dependencies

• git, flex, bison - needed if the sources are from cloned repository and not the source tarball

• development version of MySQL client for MySQL source driver

• development version of unixODBC for the unixODBC source driver

• development version of libPQ for the PostgreSQL source driver

• development version of libexpat for the XMLpipe source driver

• RE2 (bundled in the source tarball) for regexp_filter feature

• lib stemmer (bundled in the source tarball) for additional language stemmers

8 Chapter 2. Installation

Manticore Search Documentation, Release 2.6.1

2.5.3 General building options

For compiling latest version of Manticore, recommended is checkout the latest code from the github repositiory.
Alternative, for compiling a certain version, you can either checked that version from github or use it’s respective
source tarball. In last case avoid to use automatic tarballs from github (named there as ‘Source code’), but use provided
files as manticore-2.4.1-171017-3b31a97-release.tar.gz. When building from clone you need packages git, flex, bison.
When building from tarball they are not necessary. This requirement may be essential to build on Windows.

$ git clone https://github.com/manticoresoftware/manticore.git

$ wget https://github.com/manticoresoftware/manticore/releases/download/2.4.1/
→˓manticore-2.4.1-171017-3b31a97-release.tar.gz
$ tar zcvf manticore-2.4.1-171017-3b31a97-release.tar.gz

Next step is to configure the building with cmake. Available list of configuration options:

• CMAKE_BUILD_TYPE - can be Debug , Release , MinSizeRel and RelWithDebInfo (default).

• SPLIT_SYMBOLS (bool) - specify whenever to create separate files with debugging symbols. In the default
build type,RelWithDebInfo, the binaries include the debug symbols. With this option specified, the binaries will
be stripped of the debug symbols , which will be put in separate files

• USE_BISON, USE_FLEX (bool) - enabled by default, specifies whenever to enable bison and flex tools

• LIBS_BUNDLE - filepath to a folder with different libraries. This is mostly relevant for Windows building

• WITH_STEMMER (bool) - specifies if the build should include the libstemmer library. The library is searched in
several places, starting with

– libstemmer_c folder in the source directory

– common system path. Please note that in this case, the linking is dynamic and libstemmer should be
available system-wide on the installed systems

– libstemmer_c.tgz in LIBS_BUNDLE folder.

– download from snowball project website. This is done by cmake and no additional tool is required

– NOTE: if you have libstemmer in the system, but still want to use static version, say, to build a binary for
a system without such lib, provide WITH_STEMMER_FORCE_STATIC=1 in advance.

• WITH_RE2 (bool) - specifies if the build should include the RE2 library. The library can be taken from the
following locations:

– in the folder specified by WITH_RE2_ROOT parameters

– in libre2 folder of the Manticore sources

– system wide search, while first looking for headers specified by WITH_RE2_INCLUDES folder and the
lib files in WITH_RE2_LIBS folder

– check presence of master.zip in the LIBS_BUNDLE folder

– Download from https://github.com/manticoresoftware/re2/archive/master.zip

– NOTE: if you have RE2 in the system, but still want to use static version, say, to build a binary for a system
without such lib, provide WITH_RE2_FORCE_STATIC=1 in advance.

• WITH_EXPAT (bool) enabled compiling with libexpat, used XMLpipe source driver

• WITH_MYSQL (bool) enabled compiling with MySQL client library, used by MySQL source driver. Addi-
tional parameters WITH_MYSQL_ROOT, WITH_MYSQL_LIBS and WITH_MYSQL_INCLUDES can be used
for custom MySQL files

2.5. Compiling Manticore from source 9

https://github.com/manticoresoftware/re2/archive/master.zip

Manticore Search Documentation, Release 2.6.1

• WITH_ODBC (bool) enabled compiling with ODBC client library, used by ODBC source driver

• WITH_PGSQL (bool) enabled compiling with PostgreSQL client library, used by PostgreSQL source driver

• DISTR_BUILD - in case the target is packaging, it specifies the target operating system. Supported values are:
centos6, centos7, wheezy, jessie, stretch, trusty, xenial, macos, default.

2.5.4 Compiling on UNIX systems

To install all dependencies on Debian/Ubuntu:

$ apt-get install build-essential cmake unixodbc-dev libpq-dev libexpat-dev
→˓libmysqlclient-dev git flex bison

Note: on Debian 9 (stretch) package libmysqlclient-dev is absent. Use default-libmysqlclient-dev
there instead.

To install all dependencies on CentOS/RHEL:

$ yum install gcc gcc-c++ make cmake mysql-devel expat-devel postgresql-devel
→˓unixODBC-devel rpm-build systemd-units git flex bison

(git, flex, bison doesn’t necessary if you build from tarball)

RHEL/CentOS 6 ship with a old version of the gcc compiler, which doesn’t support -std=c++11 flag, for compiling
use devtools repository:

$ wget http://people.centos.org/tru/devtools-2/devtools-2.repo -O /etc/yum.repos.d/
→˓devtools-2.repo
$ yum upgrade -y
$ yum install -y devtoolset-2-gcc devtoolset-2-binutils devtoolset-2-gcc-c++
$ export PATH=/opt/rh/devtoolset-2/root/usr/bin:$PATH

Manticore uses cmake for building. We recommend to use a folder outside the sources to keep them clean.

$ mkdir build
$ cd build
$ cmake -D WITH_MYSQL=1 -DWITH_RE2=1 ../manticore

or if we use sources from tarball:

$ cmake -D WITH_MYSQL=1 -DWITH_RE2=1 ../manticore-2.4.1-171017-3b31a97-release

To simply compile:

$ make -j4

This will create the binary files, however we want to either install Manticore or more convenient to create a package.
To install just do

$ make -j4 install

For packaging use package

$ make -j4 package

By default, if no operating system was targeted, package will create only a zip with the binaries. If, for example, we
want to create a deb package for Debian Jessie, we need to specify to cmake the DISTR_BUILD parameter:

10 Chapter 2. Installation

Manticore Search Documentation, Release 2.6.1

$ cmake -DDISTR_BUILD=jessie ../manticore
$ make -j4 package

This will create 2 deb packages, a manticore-x.x.x-bin.deb and a manticore-x.x.x-dbg.deb which contains the version
with debug symbols. Another possible target is tarball , which create a tar.gz file from the sources.

2.5.5 Compiling on Windows

For building on Windows you need:

• Visual Studio

• Cmake for Windows

• Expat, MySQL and PostgreSQL in bundle directory.

If you build from git clone, you also need to provide git, flex, bison tools. They may be fond in cygwin framework.
When building from tarball these tools are not necessary.

For a simple building on x64:

C:\build>"%PROGRAMW6432%\CMake\bin\cmake.exe" -G "Visual Studio 14 Win64" -DLIBS_
→˓BUNDLE="C:\bundle" "C:\manticore"
C:\build>"%PROGRAMW6432%\CMake\bin\cmake.exe" -DWITH_PGSQL=1 -DWITH_RE2=1 -DWITH_
→˓STEMMER=1 .
C:\build>"%PROGRAMW6432%\CMake\bin\cmake.exe" --build . --target package --config
→˓RelWithDebInfo

2.5.6 Recompilation (update)

If you didn’t change path for sources and build, just move to you build folder and run:

cmake .
make clean
make

If by any reason it doesn’t work, you can delete file CMakeCache.txt located in build folder. After this step you
have to run cmake again, pointing to source folder and configuring the options.

If it also doesn’t help, just wipe out your build folder and begin clean compiling from sources

2.6 Quick Manticore usage tour

We are going to use SphinxQL protocol as it’s the current recommended way and it’s also easy to play with. First we
connect to Manticore with the normal MySQL client:

$ mysql -h0 -P9306

The default configuration comes with a sample Real-Time. A first step to see it in action is to add several documents
to it, then you can start perform searches:

2.6. Quick Manticore usage tour 11

Manticore Search Documentation, Release 2.6.1

mysql> INSERT INTO rt VALUES (1, 'this is', 'a sample text', 11);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO rt VALUES (2, 'some more', 'text here', 22);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO rt VALUES (3, 'more about this text', 'can be found in this
→˓text', 22);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT *,weight() FROM rt WHERE MATCH('text') ORDER BY WEIGHT() DESC;
+------+------+----------+
| id | gid | weight() |
+------+------+----------+
3	22	2252
1	11	1319
2	22	1319
+------+------+----------+
3 rows in set (0.00 sec)

In the sample configuration there is also a plain index with MySQL source, which needs to be indexed first in order to
start using it. First, we populate the sample table in MySQL:

mysql> create database test;
$ mysql -u test < /usr/share/doc/manticore/example-conf/example.sql

The sample config uses a test with no password for connecting to MySQL. Adjust the credentials, then index:

$ sudo -u manticore indexer -c /etc/sphinxsearch/sphinx.conf test1 --rotate
Manticore 2.3.3 9b7033e@170806 master...origin/master-id64-dev
Copyright (c) 2001-2016, Andrew Aksyonoff
Copyright (c) 2008-2016, Sphinx Technologies Inc (http://sphinxsearch.com)
Copyright (c) 2017, Manticore Software LTD (http://manticoresearch.com)

using config file '/etc/sphinxsearch/sphinx.conf'...
indexing index 'test1'...
collected 4 docs, 0.0 MB
sorted 0.0 Mhits, 100.0% done
total 4 docs, 193 bytes
total 0.002 sec, 81503 bytes/sec, 1689.18 docs/sec
total 4 reads, 0.000 sec, 8.1 kb/call avg, 0.0 msec/call avg
total 12 writes, 0.000 sec, 0.1 kb/call avg, 0.0 msec/call avg
rotating indices: successfully sent SIGHUP to searchd (pid=2947).

Now let’s run several queries:

mysql> SELECT *, WEIGHT() FROM test1 WHERE MATCH('"document one"/1');SHOW META;
+------+----------+------------+----------+
| id | group_id | date_added | weight() |
+------+----------+------------+----------+
| 1 | 1 | 1502280778 | 2663 |
| 2 | 1 | 1502280778 | 1528 |
+------+----------+------------+----------+
2 rows in set (0.00 sec)

+---------------+----------+
| Variable_name | Value |

(continues on next page)

12 Chapter 2. Installation

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

+---------------+----------+
total	2
total_found	2
time	0.000
keyword[0]	document
docs[0]	2
hits[0]	2
keyword[1]	one
docs[1]	1
hits[1]	2
+---------------+----------+
9 rows in set (0.00 sec)

mysql> SET profiling=1;SELECT * FROM test1 WHERE id IN (1,2,4);SHOW PROFILE;
Query OK, 0 rows affected (0.00 sec)

+------+----------+------------+
| id | group_id | date_added |
+------+----------+------------+
1	1	1502280778
2	1	1502280778
4	2	1502280778
+------+----------+------------+
3 rows in set (0.00 sec)

+--------------+----------+----------+---------+
| Status | Duration | Switches | Percent |
+--------------+----------+----------+---------+
unknown	0.000059	4	44.70
net_read	0.000001	1	0.76
local_search	0.000042	1	31.82
sql_parse	0.000012	1	9.09
fullscan	0.000001	1	0.76
finalize	0.000007	1	5.30
aggregate	0.000006	2	4.55
net_write	0.000004	1	3.03
eval_post	0.000000	1	0.00
total	0.000132	13	0
+--------------+----------+----------+---------+
10 rows in set (0.00 sec)

mysql> SELECT id, id%3 idd FROM test1 WHERE MATCH('this is | nothing') GROUP BY idd;
→˓SHOW PROFILE;
+------+------+
| id | idd |
+------+------+
1	1
2	2
3	0
+------+------+
3 rows in set (0.00 sec)

+--------+----------+----------+---------+
| Status | Duration | Switches | Percent |
+--------+----------+----------+---------+
| total | 0.000000 | 0 | 0 |

(continues on next page)

2.6. Quick Manticore usage tour 13

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

+--------+----------+----------+---------+
1 row in set (0.00 sec)

mysql> SELECT id FROM test1 WHERE MATCH('is this a good plan?');SHOW PLAN\G
Empty set (0.00 sec)

*************************** 1. row ***************************
Variable: transformed_tree

Value: AND(
AND(KEYWORD(is, querypos=1)),
AND(KEYWORD(this, querypos=2)),
AND(KEYWORD(a, querypos=3)),
AND(KEYWORD(good, querypos=4)),
AND(KEYWORD(plan, querypos=5)))

1 row in set (0.00 sec)

mysql> SELECT COUNT(*) c, id%3 idd FROM test1 GROUP BY idd HAVING COUNT(*)>1;
+------+------+
| c | idd |
+------+------+
| 2 | 1 |
+------+------+
1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM test1;
+----------+
| count(*) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)

mysql> CALL KEYWORDS ('one two three', 'test1', 1);
+------+-----------+------------+------+------+
| qpos | tokenized | normalized | docs | hits |
+------+-----------+------------+------+------+
1	one	one	1	2
2	two	two	1	2
3	three	three	0	0
+------+-----------+------------+------+------+
3 rows in set (0.00 sec)

14 Chapter 2. Installation

CHAPTER 3

Indexing

3.1 Data sources

The data to be indexed can generally come from very different sources: SQL databases, plain text files, HTML files,
mailboxes, and so on. From Manticore point of view, the data it indexes is a set of structured documents, each of which
has the same set of fields and attributes. This is similar to SQL, where each row would correspond to a document, and
each column to either a field or an attribute.

Depending on what source Manticore should get the data from, different code is required to fetch the data and prepare
it for indexing. This code is called data source driver (or simply driver or data source for brevity).

At the time of this writing, there are built-in drivers for MySQL, PostgreSQL, MS SQL (on Windows), and ODBC.
There is also a generic driver called xmlpipe2, which runs a specified command and reads the data from its stdout.
See xmlpipe2 data source section for the format description. tsvpipe (Tab Separated Values) and csvpipe (Comma
Separated Values) data source also available and described in TSV/CSV data source.

There can be as many sources per index as necessary. They will be sequentially processed in the very same order
which was specified in index definition. All the documents coming from those sources will be merged as if they were
coming from a single source.

3.2 Full-text fields

Full-text fields (or just fields for brevity) are the textual document contents that get indexed by Manticore, and can be
(quickly) searched for keywords.

Fields are named, and you can limit your searches to a single field (eg. search through “title” only) or a subset of fields
(eg. to “title” and “abstract” only). Manticore index format generally supports up to 256 fields.

Note that the original contents of the fields are not stored in the Manticore index. The text that you send to Manticore
gets processed, and a full-text index (a special data structure that enables quick searches for a keyword) gets built from
that text. But the original text contents are then simply discarded. Manticore assumes that you store those contents
elsewhere anyway.

15

Manticore Search Documentation, Release 2.6.1

Moreover, it is impossible to fully reconstruct the original text, because the specific whitespace, capitalization, punc-
tuation, etc will all be lost during indexing. It is theoretically possible to partially reconstruct a given document from
the Manticore full-text index, but that would be a slow process (especially if the CRC dictionary is used, which does
not even store the original keywords and works with their hashes instead).

3.3 Attributes

Attributes are additional values associated with each document that can be used to perform additional filtering and
sorting during search.

It is often desired to additionally process full-text search results based not only on matching document ID and its rank,
but on a number of other per-document values as well. For instance, one might need to sort news search results by
date and then relevance, or search through products within specified price range, or limit blog search to posts made
by selected users, or group results by month. To do that efficiently, Manticore allows to attach a number of additional
attributes to each document, and store their values in the full-text index. It’s then possible to use stored values to filter,
sort, or group full-text matches.

Attributes, unlike the fields, are not full-text indexed. They are stored in the index, but it is not possible to search them
as full-text, and attempting to do so results in an error.

For example, it is impossible to use the extended matching mode expression @column 1 to match documents where
column is 1, if column is an attribute, and this is still true even if the numeric digits are normally indexed.

Attributes can be used for filtering, though, to restrict returned rows, as well as sorting or result grouping; it is entirely
possible to sort results purely based on attributes, and ignore the search relevance tools. Additionally, attributes are
returned from the search daemon, while the indexed text is not.

A good example for attributes would be a forum posts table. Assume that only title and content fields need to be
full-text searchable - but that sometimes it is also required to limit search to a certain author or a sub-forum (ie. search
only those rows that have some specific values of author_id or forum_id columns in the SQL table); or to sort matches
by post_date column; or to group matching posts by month of the post_date and calculate per-group match counts.

This can be achieved by specifying all the mentioned columns (excluding title and content, that are full-text fields) as
attributes, indexing them, and then using API calls to setup filtering, sorting, and grouping. Here as an example.

3.3.1 Example sphinx.conf part:

...
sql_query = SELECT id, title, content, \

author_id, forum_id, post_date FROM my_forum_posts
sql_attr_uint = author_id
sql_attr_uint = forum_id
sql_attr_timestamp = post_date
...

3.3.2 Example application code (in PHP):

// only search posts by author whose ID is 123
$cl->SetFilter ("author_id", array (123));

// only search posts in sub-forums 1, 3 and 7
$cl->SetFilter ("forum_id", array (1,3,7));

(continues on next page)

16 Chapter 3. Indexing

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

// sort found posts by posting date in descending order
$cl->SetSortMode (SPH_SORT_ATTR_DESC, "post_date");

Attributes are named. Attribute names are case insensitive. Attributes are not full-text indexed; they are stored in the
index as is. Currently supported attribute types are:

• unsigned integers (1-bit to 32-bit wide);

• signed big integers (64-bit wide);

• UNIX timestamps;

• floating point values (32-bit, IEEE 754 single precision);

• strings;

• JSON;

• MVA, multi-value attributes (variable-length lists of 32-bit unsigned integers).

The complete set of per-document attribute values is sometimes referred to as docinfo. Docinfos can either be

• stored separately from the main full-text index data (“extern” storage, in .spa file), or

• attached to each occurrence of document ID in full-text index data (“inline” storage, in .spd file).

When using extern storage, a copy of .spa file (with all the attribute values for all the documents) is kept in RAM
by searchd at all times. This is for performance reasons; random disk I/O would be too slow. On the contrary,
inline storage does not require any additional RAM at all, but that comes at the cost of greatly inflating the index
size: remember that it copies all attribute value every time when the document ID is mentioned, and that is exactly as
many times as there are different keywords in the document. Inline may be the only viable option if you have only a
few attributes and need to work with big datasets in limited RAM. However, in most cases extern storage makes both
indexing and searching much more efficient.

Search-time memory requirements for extern storage are (1+number_of_attrs)*number_of_docs*4 bytes, ie. 10 mil-
lion docs with 2 groups and 1 timestamp will take (1+2+1)*10M*4 = 160 MB of RAM. This is PER DAEMON, not
per query. searchd will allocate 160 MB on startup, read the data and keep it shared between queries. The children
will NOT allocate any additional copies of this data.

3.4 MVA (multi-valued attributes)

MVAs, or multi-valued attributes, are an important special type of per-document attributes in Manticore. MVAs let
you attach sets of numeric values to every document. That is useful to implement article tags, product categories, etc.
Filtering and group-by (but not sorting) on MVA attributes is supported.

MVA values can either be unsigned 32-bit integers (UNSIGNED INTEGER) or signed 64-bit integers (BIGINT).

The set size is not limited, you can have an arbitrary number of values attached to each document as long as RAM
permits (.spm file that contains the MVA values will be precached in RAM by searchd). The source data can be
taken either from a separate query, or from a document field; see source type in sql_attr_multi. In the first case the
query will have to return pairs of document ID and MVA values, in the second one the field will be parsed for integer
values. There are absolutely no requirements as to incoming data order; the values will be automatically grouped by
document ID (and internally sorted within the same ID) during indexing anyway.

When filtering, a document will match the filter on MVA attribute if any of the values satisfy the filtering condition.
(Therefore, documents that pass through exclude filters will not contain any of the forbidden values.) When grouping
by MVA attribute, a document will contribute to as many groups as there are different MVA values associated with
that document. For instance, if the collection contains exactly 1 document having a ‘tag’ MVA with values 5, 7, and
11, grouping on ‘tag’ will produce 3 groups with ‘COUNT(*)‘equal to 1 and ‘GROUPBY()’ key values of 5, 7, and

3.4. MVA (multi-valued attributes) 17

Manticore Search Documentation, Release 2.6.1

11 respectively. Also note that grouping by MVA might lead to duplicate documents in the result set: because each
document can participate in many groups, it can be chosen as the best one in in more than one group, leading to
duplicate IDs. PHP API historically uses ordered hash on the document ID for the resulting rows; so you’ll also need
to use SetArrayResult() in order to employ group-by on MVA with PHP API.

3.5 Indexes

To be able to answer full-text search queries fast, Manticore needs to build a special data structure optimized for
such queries from your text data. This structure is called index; and the process of building index from text is called
indexing.

An index identifier must be a single word, that can contain letters, numbers and underscores. It must start with a letter.

Different index types are well suited for different tasks. For example, a disk-based tree-based index would be easy to
update (ie. insert new documents to existing index), but rather slow to search. Manticore architecture allows internally
for different index types, or backends, to be implemented comparatively easily.

Manticore provides 2 different backends: a disk index backend, and a RT (realtime) index backend.

3.5.1 Offline/plain indexes

Disk indexes are designed to provide maximum indexing and searching speed, while keeping the RAM footprint as
low as possible. That comes at a cost of text index updates. You can not update an existing document or incrementally
add a new document to a disk index. You only can batch rebuild the entire disk index from scratch. (Note that you still
can update document’s attributes on the fly, even with the disk indexes.)

This “rebuild only” limitation might look as a big constraint at a first glance. But in reality, it can very frequently be
worked around rather easily by setting up multiple disk indexes, searching through them all, and only rebuilding the
one with a fraction of the most recently changed data. See Live index updates for details.

3.5.2 Real-Time indexes

RT indexes enable you to implement dynamic updates and incremental additions to the full text index. RT stands for
Real Time and they are indeed “soft realtime” in terms of writes, meaning that most index changes become available
for searching as quick as 1 millisecond or less, but could occasionally stall for seconds. (Searches will still work even
during that occasional writing stall.) Refer to Real-time indexes for details.

3.5.3 Distributed indexes

Manticore supports so-called distributed indexes. Compared to disk and RT indexes, those are not a real physical
backend, but rather just lists of either local or remote indexes that can be searched transparently to the application,
with Manticore doing all the chores of sending search requests to remote machines in the cluster, aggregating the result
sets, retrying the failed requests, and even doing some load balancing. See Distributed searching for a discussion of
distributed indexes.

3.5.4 Templates indexes

Template indexes are indexes with no storage backend. They can be used operations that involve only data from input,
like keywords and snippets generation.

18 Chapter 3. Indexing

Manticore Search Documentation, Release 2.6.1

3.5.5 Percolate indexes

Percolate indexes are special Real-Time indexes that store queries instead of documents. They are used for prospective
searches (or “search in reverse”). Refer to Percolate query for more details.

There can be as many indexes per configuration file as necessary. indexer utility can reindex either all of them
(if --all option is specified), or a certain explicitly specified subset. searchd utility will serve all the specified
indexes, and the clients can specify what indexes to search in run time.

3.6 Restrictions on the source data

There are a few different restrictions imposed on the source data which is going to be indexed by Manticore, of which
the single most important one is:

ALL DOCUMENT IDS MUST BE UNIQUE UNSIGNED NON-ZERO INTEGER NUMBERS (32-BIT OR
64-BIT, DEPENDING ON BUILD TIME SETTINGS).

If this requirement is not met, different bad things can happen. For instance, Manticore can crash with an internal
assertion while indexing; or produce strange results when searching due to conflicting IDs. Also, a 1000-pound gorilla
might eventually come out of your display and start throwing barrels at you. You’ve been warned.

3.7 Charsets, case folding, translation tables, and replacement rules

When indexing some index, Manticore fetches documents from the specified sources, splits the text into words, and
does case folding so that “Abc”, “ABC” and “abc” would be treated as the same word (or, to be pedantic, term).

To do that properly, Manticore needs to know

• what encoding is the source text in (and this encoding should always be UTF-8);

• what characters are letters and what are not;

• what letters should be folded to what letters.

This should be configured on a per-index basis using charset_table. option. charset_table specifies the table that maps
letter characters to their case folded versions. The characters that are not in the table are considered to be non-letters
and will be treated as word separators when indexing or searching through this index.

Default tables currently include English and Russian characters. Please do submit your tables for other languages!

You can also specify text pattern replacement rules. For example, given the rules

regexp_filter = **(\d+)\" => \1 inch
regexp_filter = (BLUE|RED) => COLOR

the text ‘RED TUBE 5” LONG’ would be indexed as ‘COLOR TUBE 5 INCH LONG’, and ‘PLANK 2” x 4“‘as
‘PLANK 2 INCH x 4 INCH’. Rules are applied in the given order. Text in queries is also replaced; a search for”BLUE
TUBE” would actually become a search for “COLOR TUBE”. Note that Manticore must be built with the –with-re2
option to use this feature.

3.8 SQL data sources (MySQL, PostgreSQL)

With all the SQL drivers, indexing generally works as follows.

• connection to the database is established;

3.6. Restrictions on the source data 19

Manticore Search Documentation, Release 2.6.1

• pre-query (see sql_query_pre) is executed to perform any necessary initial setup, such as setting per-connection
encoding with MySQL;

• main query (see sql_query) is executed and the rows it returns are indexed;

• post-query (see sql_query_post) is executed to perform any necessary cleanup;

• connection to the database is closed;

• indexer does the sorting phase (to be pedantic, index-type specific post-processing);

• connection to the database is established again;

• post-index query (see sql_query_post_index) is executed to perform any necessary final cleanup;

• connection to the database is closed again.

Most options, such as database user/host/password, are straightforward. However, there are a few subtle things, which
are discussed in more detail here.

3.8.1 Ranged queries

Main query, which needs to fetch all the documents, can impose a read lock on the whole table and stall the concurrent
queries (eg. INSERTs to MyISAM table), waste a lot of memory for result set, etc. To avoid this, Manticore supports
so-called ranged queries. With ranged queries, Manticore first fetches min and max document IDs from the table,
and then substitutes different ID intervals into main query text and runs the modified query to fetch another chunk of
documents. Here’s an example.

Example 3.1. Ranged query usage example

in sphinx.conf

sql_query_range = SELECT MIN(id),MAX(id) FROM documents
sql_range_step = 1000
sql_query = SELECT * FROM documents WHERE id>=$start AND id<=$end

If the table contains document IDs from 1 to, say, 2345, then sql_query would be run three times:

1. with $start replaced with 1 and $end replaced with 1000;

2. with $start replaced with 1001 and $end replaced with 2000;

3. with $start replaced with 2001 and $end replaced with 2345.

Obviously, that’s not much of a difference for 2000-row table, but when it comes to indexing 10-million-row MyISAM
table, ranged queries might be of some help.

3.8.2 sql_query_post vs. sql_query_post_index

The difference between post-query and post-index query is in that post-query is run immediately when Manticore
received all the documents, but further indexing may still fail for some other reason. On the contrary, by the time the
post-index query gets executed, it is guaranteed that the indexing was successful. Database connection is dropped
and re-established because sorting phase can be very lengthy and would just timeout otherwise.

3.9 xmlpipe2 data source

xmlpipe2 lets you pass arbitrary full-text and attribute data to Manticore in yet another custom XML format. It also
allows to specify the schema (ie. the set of fields and attributes) either in the XML stream itself, or in the source

20 Chapter 3. Indexing

Manticore Search Documentation, Release 2.6.1

settings.

When indexing xmlpipe2 source, indexer runs the given command, opens a pipe to its stdout, and expects well-formed
XML stream. Here’s sample stream data:

Example 3.2. xmlpipe2 document stream

<?xml version="1.0" encoding="utf-8"?>
<sphinx:docset>

<sphinx:schema>
<sphinx:field name="subject"/>
<sphinx:field name="content"/>
<sphinx:attr name="published" type="timestamp"/>
<sphinx:attr name="author_id" type="int" bits="16" default="1"/>
</sphinx:schema>

<sphinx:document id="1234">
<content>this is the main content <![CDATA[[and this <cdata> entry
must be handled properly by xml parser lib]]></content>
<published>1012325463</published>
<subject>note how field/attr tags can be
in <** class="red">randomized** order</subject>
<misc>some undeclared element</misc>
</sphinx:document>

<sphinx:document id="1235">
<subject>another subject</subject>
<content>here comes another document, and i am given to understand,
that in-document field order must not matter, sir</content>
<published>1012325467</published>
</sphinx:document>

<!-- ... even more sphinx:document entries here ... -->

<sphinx:killlist>
<id>1234</id>
<id>4567</id>
</sphinx:killlist>

</sphinx:docset>

Arbitrary fields and attributes are allowed. They also can occur in the stream in arbitrary order within each document;
the order is ignored. There is a restriction on maximum field length; fields longer than 2 MB will be truncated to 2
MB (this limit can be changed in the source).

The schema, ie. complete fields and attributes list, must be declared before any document could be parsed. This can
be done either in the configuration file using xmlpipe_field and xmlpipe_attr_XXX settings, or right in the
stream using <sphinx:schema> element. <sphinx:schema> is optional. It is only allowed to occur as the very first
sub-element in <sphinx:docset>. If there is no in-stream schema definition, settings from the configuration file will be
used. Otherwise, stream settings take precedence.

Unknown tags (which were not declared neither as fields nor as attributes) will be ignored with a warning. In the
example above, <misc> will be ignored. All embedded tags and their attributes (such as ** in <subject> in the
example above) will be silently ignored.

Support for incoming stream encodings depends on whether iconv is installed on the system. xmlpipe2 is parsed
using libexpat parser that understands US-ASCII, ISO-8859-1, UTF-8 and a few UTF-16 variants natively. Manti-
core configure script will also check for libiconv presence, and utilize it to handle other encodings. libexpat

3.9. xmlpipe2 data source 21

Manticore Search Documentation, Release 2.6.1

also enforces the requirement to use UTF-8 charset on Manticore side, because the parsed data it returns is always in
UTF-8.

XML elements (tags) recognized by xmlpipe2 (and their attributes where applicable) are:

• sphinx:docset

• Mandatory top-level element, denotes and contains xmlpipe2 document set.

• sphinx:schema

• Optional element, must either occur as the very first child of sphinx:docset, or never occur at all. Declares the
document schema. Contains field and attribute declarations. If present, overrides per-source settings from the
configuration file.

• sphinx:field

• Optional element, child of sphinx:schema. Declares a full-text field. Known attributes are:

– “name”, specifies the XML element name that will be treated as a full-text field in the subsequent docu-
ments.

– “attr”, specifies whether to also index this field as a string. Possible value is “string”.

• sphinx:attr

• Optional element, child of sphinx:schema. Declares an attribute. Known attributes are:

– “name”, specifies the element name that should be treated as an attribute in the subsequent documents.

– “type”, specifies the attribute type. Possible values are “int”, “bigint”, “timestamp”, “bool”, “float”,
“multi” and “json”.

– “bits”, specifies the bit size for “int” attribute type. Valid values are 1 to 32.

– “default”, specifies the default value for this attribute that should be used if the attribute’s element is not
present in the document.

• sphinx:document

• Mandatory element, must be a child of sphinx:docset. Contains arbitrary other elements with field and attribute
values to be indexed, as declared either using sphinx:field and sphinx:attr elements or in the configuration file.
The only known attribute is “id” that must contain the unique integer document ID.

• sphinx:killlist

• Optional element, child of sphinx:docset. Contains a number of “id” elements whose contents are document
IDs to be put into a kill-list for this index.

3.10 TSV/CSV data source

This is the simplest way to pass data to the indexer. It was created due to xmlpipe2 limitations. Namely, indexer must
map each attribute and field tag in XML file to corresponding schema element. This mapping requires some time. And
time increases with increasing the number of fields and attributes in schema. There is no such issue in tsvpipe because
each field and attribute is a particular column in TSV file. So, in some cases tsvpipe could work slightly faster than
xmlpipe2.

The first column in TSVCSV file must be a document ID. The rest ones must mirror the declaration of fields and
attributes in schema definition.

The difference between tsvpipe and csvpipe is delimiter and quoting rules. tsvpipe has tab character as hardcoded
delimiter and has no quoting rules. csvpipe has option csvpipe_delimiter for delimiter with default value ‘,’ and also
has quoting rules, such as:

22 Chapter 3. Indexing

Manticore Search Documentation, Release 2.6.1

• any field may be quoted

• fields containing a line-break, double-quote or commas should be quoted

• a double quote character in a field must be represented by two double quote characters

tsvpipe and csvpipe have same field and attrribute declaration derectives as xmlpipe.

tsvpipe declarations:

tsvpipe_command, tsvpipe_field, tsvpipe_field_string, tsvpipe_attr_uint, tsvpipe_attr_timestamp, tsvpipe_attr_bool,
tsvpipe_attr_float, tsvpipe_attr_bigint, tsvpipe_attr_multi, tsvpipe_attr_multi_64, tsvpipe_attr_string,
tsvpipe_attr_json

csvpipe declarations:

csvpipe_command, csvpipe_field, csvpipe_field_string, csvpipe_attr_uint, csvpipe_attr_timestamp,
csvpipe_attr_bool, csvpipe_attr_float, csvpipe_attr_bigint, csvpipe_attr_multi, csvpipe_attr_multi_64,
csvpipe_attr_string, csvpipe_attr_json

source tsv_test
{

type = tsvpipe
tsvpipe_command = cat /tmp/rock_bands.tsv
tsvpipe_field = name
tsvpipe_attr_multi = genre_tags

}

1 Led Zeppelin 35,23,16
2 Deep Purple 35,92
3 Frank Zappa 35,23,16,92,33,24

3.11 Live index updates

There are two major approaches to maintaining the full-text index contents up to date. Note, however, that both these
approaches deal with the task of full-text data updates, and not attribute updates (which are already supported, refer to
UpdateAttributes API call description for details.)

First, you can use disk-based indexes, partition them manually, and only rebuild the smaller partitions (so-called
“deltas”) frequently. By minimizing the rebuild size, you can reduce the average indexing lag to something as low
as 30-60 seconds. On huge collections it actually might be the most efficient one. Refer to Delta index updates for
details.

Second, using real-time indexes (RT indexes for short) that on-the-fly updates of the full-text data. Updates on a
RT index can appear in the search results in 1-2 milliseconds, ie. 0.001-0.002 seconds. However, RT index are less
efficient for bulk indexing huge amounts of data. Refer to Real-time indexes for details.

3.12 Delta index updates

There’s a frequent situation when the total dataset is too big to be reindexed from scratch often, but the amount of new
records is rather small. Example: a forum with a 1,000,000 archived posts, but only 1,000 new posts per day.

In this case, “live” (almost real time) index updates could be implemented using so called “main+delta” scheme.

The idea is to set up two sources and two indexes, with one “main” index for the data which only changes rarely (if
ever), and one “delta” for the new documents. In the example above, 1,000,000 archived posts would go to the main

3.11. Live index updates 23

Manticore Search Documentation, Release 2.6.1

index, and newly inserted 1,000 posts/day would go to the delta index. Delta index could then be reindexed very
frequently, and the documents can be made available to search in a matter of minutes.

Specifying which documents should go to what index and reindexing main index could also be made fully automatic.
One option would be to make a counter table which would track the ID which would split the documents, and update
it whenever the main index is reindexed.

Example 3.3. Fully automated live updates

in MySQL
CREATE TABLE sph_counter
(

counter_id INTEGER PRIMARY KEY NOT NULL,
max_doc_id INTEGER NOT NULL

);

in sphinx.conf
source main
{

...
sql_query_pre = SET NAMES utf8
sql_query_pre = REPLACE INTO sph_counter SELECT 1, MAX(id) FROM documents
sql_query = SELECT id, title, body FROM documents \

WHERE id<=(SELECT max_doc_id FROM sph_counter WHERE counter_id=1)
}

source delta : main
{

sql_query_pre = SET NAMES utf8
sql_query = SELECT id, title, body FROM documents \

WHERE id>(SELECT max_doc_id FROM sph_counter WHERE counter_id=1)
}

index main
{

source = main
path = /path/to/main
... all the other settings

}

note how all other settings are copied from main,
but source and path are overridden (they MUST be)
index delta : main
{

source = delta
path = /path/to/delta

}

Note how we’re overriding sql_query_pre in the delta source. We need to explicitly have that override. Otherwise
REPLACE query would be run when indexing delta source too, effectively nullifying it. However, when we issue the
directive in the inherited source for the first time, it removes all inherited values, so the encoding setup is also lost. So
sql_query_pre in the delta can not just be empty; and we need to issue the encoding setup query explicitly once
again.

24 Chapter 3. Indexing

Manticore Search Documentation, Release 2.6.1

3.13 Index merging

Merging two existing indexes can be more efficient than indexing the data from scratch, and desired in some cases
(such as merging ‘main’ and ‘delta’ indexes instead of simply reindexing ‘main’ in ‘main+delta’ partitioning scheme).
So indexer has an option to do that. Merging the indexes is normally faster than reindexing but still not instant on
huge indexes. Basically, it will need to read the contents of both indexes once and write the result once. Merging 100
GB and 1 GB index, for example, will result in 202 GB of IO (but that’s still likely less than the indexing from scratch
requires).

The basic command syntax is as follows:

indexer --merge DSTINDEX SRCINDEX [--rotate]

Only the DSTINDEX index will be affected: the contents of SRCINDEX will be merged into it. --rotate switch
will be required if DSTINDEX is already being served by searchd. The initially devised usage pattern is to merge a
smaller update from SRCINDEX into DSTINDEX. Thus, when merging the attributes, values from SRCINDEX will
win if duplicate document IDs are encountered. Note, however, that the “old” keywords will not be automatically
removed in such cases. For example, if there’s a keyword “old” associated with document 123 in DSTINDEX, and
a keyword “new” associated with it in SRCINDEX, document 123 will be found by both keywords after the merge.
You can supply an explicit condition to remove documents from DSTINDEX to mitigate that; the relevant switch is
--merge-dst-range:

indexer --merge main delta --merge-dst-range deleted 0 0

This switch lets you apply filters to the destination index along with merging. There can be several filters; all of their
conditions must be met in order to include the document in the resulting merged index. In the example above, the filter
passes only those records where ‘deleted’ is 0, eliminating all records that were flagged as deleted (for instance, using
UpdateAttributes() call).

3.13. Index merging 25

Manticore Search Documentation, Release 2.6.1

26 Chapter 3. Indexing

CHAPTER 4

Real-time indexes

Real-time indexes (or RT indexes for brevity) are a backend that lets you insert, update, or delete documents (rows)
on the fly. While querying of RT indexes is possible using any of the SphinxAPI, SphinxQL, or SphinxSE, updating
them is only possible via SphinxQL at the moment. Full SphinxQL reference is available in SphinxQL reference.

4.1 RT indexes overview

RT indexes should be declared in sphinx.conf, just as every other index type. Notable differences from the regular,
disk-based indexes are that a) data sources are not required and ignored, and b) you should explicitly enumerate all the
text fields, not just attributes. Here’s an example:

Example 4.1. RT index declaration

index rt
{

type = rt
path = /usr/local/sphinx/data/rt
rt_field = title
rt_field = content
rt_attr_uint = gid

}

RT index can be accessed using MySQL protocol. INSERT, REPLACE, DELETE, and SELECT statements against
RT index are supported. For instance, this is an example session with the sample index above:

$ mysql -h 127.0.0.1 -P 9306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 1.10-dev (r2153)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> INSERT INTO rt VALUES (1, 'first record', 'test one', 123);

(continues on next page)

27

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

Query OK, 1 row affected (0.05 sec)

mysql> INSERT INTO rt VALUES (2, 'second record', 'test two', 234);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM rt;
+------+--------+------+
| id | weight | gid |
+------+--------+------+
| 1 | 1 | 123 |
| 2 | 1 | 234 |
+------+--------+------+
2 rows in set (0.02 sec)

mysql> SELECT * FROM rt WHERE MATCH('test');
+------+--------+------+
| id | weight | gid |
+------+--------+------+
| 1 | 1643 | 123 |
| 2 | 1643 | 234 |
+------+--------+------+
2 rows in set (0.01 sec)

mysql> SELECT * FROM rt WHERE MATCH('@title test');
Empty set (0.00 sec)

Both partial and batch INSERT syntaxes are supported, ie. you can specify a subset of columns, and insert several
rows at a time. Deletions are also possible using DELETE statement; the only currently supported syntax is DELETE
FROM <index> WHERE id=<id>. REPLACE is also supported, enabling you to implement updates.

mysql> INSERT INTO rt (id, title) VALUES (3, 'third row'), (4, 'fourth entry');
Query OK, 2 rows affected (0.01 sec)

mysql> SELECT * FROM rt;
+------+--------+------+
| id | weight | gid |
+------+--------+------+
1	1	123
2	1	234
3	1	0
4	1	0
+------+--------+------+
4 rows in set (0.00 sec)

mysql> DELETE FROM rt WHERE id=2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM rt WHERE MATCH('test');
+------+--------+------+
| id | weight | gid |
+------+--------+------+
| 1 | 1500 | 123 |
+------+--------+------+
1 row in set (0.00 sec)

mysql> INSERT INTO rt VALUES (1, 'first record on steroids', 'test one', 123);

(continues on next page)

28 Chapter 4. Real-time indexes

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

ERROR 1064 (42000): duplicate id '1'

mysql> REPLACE INTO rt VALUES (1, 'first record on steroids', 'test one', 123);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM rt WHERE MATCH('steroids');
+------+--------+------+
| id | weight | gid |
+------+--------+------+
| 1 | 1500 | 123 |
+------+--------+------+
1 row in set (0.01 sec)

Data stored in RT index should survive clean shutdown. When binary logging is enabled, it should also survive crash
and/or dirty shutdown, and recover on subsequent startup.

4.2 Known caveats with RT indexes

RT indexes are currently quality feature, but there are still a few known usage quirks. Those quirks are listed in this
section.

• Default conservative RAM chunk limit (rt_mem_limit) of 32M can lead to poor performance on bigger
indexes, you should raise it to 256..1024M if you’re planning to index gigabytes.

• The only attribute storage mode is ‘extern’ which requires at least one attribute to be present.

• High DELETE/REPLACE rate can lead to kill-list fragmentation and impact searching performance.

• No transaction size limits are currently imposed; too many concurrent INSERT/REPLACE transactions might
therefore consume a lot of RAM.

• In case of a damaged binlog, recovery will stop on the first damaged transaction, even though it’s technically
possible to keep looking further for subsequent undamaged transactions, and recover those. This mid-file dam-
age case (due to flaky HDD/CDD/tape?) is supposed to be extremely rare, though.

• Multiple INSERTs grouped in a single transaction perform better than equivalent single-row transactions and
are recommended for batch loading of data.

4.3 RT index internals

RT index is internally chunked. It keeps a so-called RAM chunk that stores all the most recent changes. RAM chunk
memory usage is rather strictly limited with per-index rt_mem_limit directive. Once RAM chunk grows over this limit,
a new disk chunk is created from its data, and RAM chunk is reset. Thus, while most changes on the RT index will be
performed in RAM only and complete instantly (in milliseconds), those changes that overflow the RAM chunk will
stall for the duration of disk chunk creation (a few seconds).

Manticore uses double-buffering to avoid INSERT stalls. When data is being dumped to disk, the second buffer is
used, so further INSERTs won’t be delayed. The second buffer is defined to be 10% the size of the standard buffer,
rt_mem_limit, but future versions of Manticore may allow configuring this further.

Disk chunks are, in fact, just regular disk-based indexes. But they’re a part of an RT index and automatically managed
by it, so you need not configure nor manage them manually. Because a new disk chunk is created every time RT
chunk overflows the limit, and because in-memory chunk format is close to on-disk format, the disk chunks will be
approximately rt_mem_limit bytes in size each.

4.2. Known caveats with RT indexes 29

Manticore Search Documentation, Release 2.6.1

Generally, it is better to set the limit bigger, to minimize both the frequency of flushes, and the index fragmentation
(number of disk chunks). For instance, on a dedicated search server that handles a big RT index, it can be advised to
set rt_mem_limit to 1-2 GB. A global limit on all indexes is also planned, but not yet implemented.

Disk chunk full-text index data can not be actually modified, so the full-text field changes (ie. row deletions and
updates) suppress a previous row version from a disk chunk using a kill-list, but do not actually physically purge the
data. Therefore, on workloads with high full-text updates ratio index might eventually get polluted by these previous
row versions, and searching performance would degrade. Physical index purging that would improve the performance
may be performed with OPTIMIZE command.

Data in RAM chunk gets saved to disk on clean daemon shutdown, and then loaded back on startup. However, on
daemon or server crash, updates from RAM chunk might be lost. To prevent that, binary logging of transactions can
be used; see the section called :ref:‘binary_logging for details.

Full-text changes in RT index are transactional. They are stored in a per-thread accumulator until COMMIT, then
applied at once. Bigger batches per single COMMIT should result in faster indexing.

4.4 Binary logging

Binary logs are essentially a recovery mechanism. With binary logs enabled, searchd writes every given transaction
to the binlog file, and uses that for recovery after an unclean shutdown. On clean shutdown, RAM chunks are saved to
disk, and then all the binlog files are unlinked.

During normal operation, a new binlog file will be opened every time when binlog_max_log_size limit is
reached. Older, already closed binlog files are kept until all of the transactions stored in them (from all indexes) are
flushed as a disk chunk. Setting the limit to 0 pretty much prevents binlog from being unlinked at all while searchd
is running; however, it will still be unlinked on clean shutdown. (binlog_max_log_size defaults to 0.)

There are 3 different binlog flushing strategies, controlled by binlog_flush directive which takes the values of 0, 1, or
2. 0 means to flush the log to OS and sync it to disk every second; 1 means flush and sync every transaction; and
2 (the default mode) means flush every transaction but sync every second. Sync is relatively slow because it has to
perform physical disk writes, so mode 1 is the safest (every committed transaction is guaranteed to be written on disk)
but the slowest. Flushing log to OS prevents from data loss on searchd crashes but not system crashes. Mode 2 is
the default.

On recovery after an unclean shutdown, binlogs are replayed and all logged transactions since the last good on-
disk state are restored. Transactions are checksummed so in case of binlog file corruption garbage data will not be
replayed; such a broken transaction will be detected and, currently, will stop replay. Transactions also start with a
magic marker and timestamped, so in case of binlog damage in the middle of the file, it’s technically possible to skip
broken transactions and keep replaying from the next good one, and/or it’s possible to replay transactions until a given
timestamp (point-in-time recovery), but none of that is implemented yet.

One unwanted side effect of binlogs is that actively updating a small RT index that fully fits into a RAM chunk part will
lead to an ever-growing binlog that can never be unlinked until clean shutdown. Binlogs are essentially append-only
deltas against the last known good saved state on disk, and unless RAM chunk gets saved, they can not be unlinked. An
ever-growing binlog is not very good for disk use and crash recovery time. To avoid this, you can configure searchd
to perform a periodic RAM chunk flush to fix that problem using a rt_flush_period directive. With periodic flushes
enabled, searchd will keep a separate thread, checking whether RT indexes RAM chunks need to be written back to
disk. Once that happens, the respective binlogs can be (and are) safely unlinked.

Note that rt_flush_period only controls the frequency at which the checks happen. There are no guarantees that
the particular RAM chunk will get saved. For instance, it does not make sense to regularly re-save a huge RAM chunk
that only gets a few rows worth of updates. The search daemon determine whether to actually perform the flush with
a few heuristics.

30 Chapter 4. Real-time indexes

CHAPTER 5

Searching

5.1 Matching modes

So-called matching modes are a legacy feature that used to provide (very) limited query syntax and ranking support.
Currently, they are deprecated in favor of full-text query language and so-called Available built-in rankers. It is
thus strongly recommended to use SPH_MATCH_EXTENDED and proper query syntax rather than any other legacy
mode. All those other modes are actually internally converted to extended syntax anyway. SphinxAPI still defaults to
SPH_MATCH_ALL but that is for compatibility reasons only.

There are the following matching modes available:

• SPH_MATCH_ALL, matches all query words;

• SPH_MATCH_ANY, matches any of the query words;

• SPH_MATCH_PHRASE, matches query as a phrase, requiring perfect match;

• SPH_MATCH_BOOLEAN, matches query as a boolean expression (see Boolean query syntax);

• SPH_MATCH_EXTENDED, matches query as an expression in Manticore internal query language (see Ex-
tended query syntax);

• SPH_MATCH_EXTENDED2, an alias for SPH_MATCH_EXTENDED (default mode);

• SPH_MATCH_FULLSCAN, matches query, forcibly using the “full scan” mode as below. NB, any query terms
will be ignored, such that filters, filter-ranges and grouping will still be applied, but no text-matching.

The SPH_MATCH_FULLSCAN mode will be automatically activated in place of the specified matching mode when
the following conditions are met:

1. The query string is empty (ie. its length is zero).

2. docinfo storage is set to extern.

In full scan mode, all the indexed documents will be considered as matching. Such queries will still apply filters,
sorting, and group by, but will not perform any full-text searching. This can be useful to unify full-text and non-
full-text searching code, or to offload SQL server (there are cases when Manticore scans will perform better than
analogous MySQL queries). An example of using the full scan mode might be to find posts in a forum. By selecting the

31

Manticore Search Documentation, Release 2.6.1

forum’s user ID via SetFilter() but not actually providing any search text, Manticore will match every document
(i.e. every post) where SetFilter() would match - in this case providing every post from that user. By default this
will be ordered by relevancy, followed by Manticore document ID in ascending order (earliest first).

5.2 Boolean query syntax

Boolean queries allow the following special operators to be used:

• operator OR:

hello | world

• operator NOT:

hello -world
hello !world

• grouping:

(hello world)

Here’s an example query which uses all these operators:

Example 5.1. Boolean query example

(cat -dog) | (cat -mouse)

There always is implicit AND operator, so “hello world” query actually means “hello & world”.

OR operator precedence is higher than AND, so “looking for cat | dog | mouse” means “looking for (cat | dog | mouse
)” and not “(looking for cat) | dog | mouse”.

Queries may be automatically optimized if OPTION boolean_simplify=1 is specified. Some transformations per-
formed by this optimization include:

• Excess brackets: ((A | B) | C) becomes (A | B | C); ((A B) C) becomes (A B C)

• Excess AND NOT: ((A !N1) !N2) becomes (A !(N1 | N2))

• Common NOT: ((A !N) | (B !N)) becomes ((A|B) !N)

• Common Compound NOT: ((A !(N AA)) | (B !(N BB))) becomes (((A|B) !N) | (A !AA) | (B !BB)) if the cost of
evaluating N is greater than the added together costs of evaluating A and B

• Common subterm: ((A (N | AA)) | (B (N | BB))) becomes (((A|B) N) | (A AA) | (B BB)) if the cost of evaluating
N is greater than the added together costs of evaluating A and B

• Common keywords: (A | “A B”~N) becomes A; (“A B” | “A B C”) becomes “A B”; (“A B”~N | “A B C”~N)
becomes (“A B”~N)

• Common phrase: (“X A B” | “Y A B”) becomes ((“X|Y”) “A B”)

• Common AND NOT: ((A !X) | (A !Y) | (A !Z)) becomes (A !(X Y Z))

• Common OR NOT: ((A !(N | N1)) | (B !(N | N2))) becomes (((A !N1) | (B !N2)) !N)

Note that optimizing the queries consumes CPU time, so for simple queries -or for hand-optimized queries- you’ll do
better with the default boolean_simplify=0 value. Simplifications are often better for complex queries, or algorithmi-
cally generated queries.

32 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

Queries like “-dog”, which implicitly include all documents from the collection, can not be evaluated. This is both for
technical and performance reasons. Technically, Manticore does not always keep a list of all IDs. Performance-wise,
when the collection is huge (ie. 10-100M documents), evaluating such queries could take very long.

5.3 Extended query syntax

The following special operators and modifiers can be used when using the extended matching mode:

• operator OR:

hello | world

• operator MAYBE:

hello MAYBE world

• operator NOT:

hello -world
hello !world

• field search operator:

@title hello @body world

• field position limit modifier:

@body[50] hello

• multiple-field search operator:

@(title,body) hello world

• ignore field search operator (will ignore any matches of ‘hello world’ from field ‘title’):

@!title hello world

• ignore multiple-field search operator (if we have fields title, subject and body then @!(title) is equivalent to
@(subject,body)):

@!(title,body) hello world

• all-field search operator:

@* hello

• phrase search operator:

"hello world"

• proximity search operator:

"hello world"~10

• quorum matching operator:

5.3. Extended query syntax 33

Manticore Search Documentation, Release 2.6.1

"the world is a wonderful place"/3

• strict order operator (aka operator “before”):

aaa << bbb << ccc

• exact form modifier:

raining =cats and =dogs

• field-start and field-end modifier:

^hello world$

• keyword IDF boost modifier:

boosted^1.234 boostedfieldend$^1.234

• NEAR, generalized proximity operator:

hello NEAR/3 world NEAR/4 "my test"

• SENTENCE operator:

all SENTENCE words SENTENCE "in one sentence"

• PARAGRAPH operator:

"Bill Gates" PARAGRAPH "Steve Jobs"

• ZONE limit operator:

ZONE:(h3,h4)

only in these titles

• ZONESPAN limit operator:

ZONESPAN:(h2)

only in a (single) title

Here’s an example query that uses some of these operators:

Example 5.2. Extended matching mode: query example

"hello world" @title "example program"~5 @body python -(php|perl) @* code

The full meaning of this search is:

• Find the words ‘hello’ and ‘world’ adjacently in any field in a document;

• Additionally, the same document must also contain the words ‘example’ and ‘program’ in the title field, with up
to, but not including, 5 words between the words in question; (E.g. “example PHP program” would be matched
however “example script to introduce outside data into the correct context for your program” would not because
two terms have 5 or more words between them)

• Additionally, the same document must contain the word ‘python’ in the body field, but not contain either ‘php’
or ‘perl’;

34 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• Additionally, the same document must contain the word ‘code’ in any field.

There always is implicit AND operator, so “hello world” means that both “hello” and “world” must be present in
matching document.

OR operator precedence is higher than AND, so “looking for cat | dog | mouse” means “looking for (cat | dog | mouse
)” and not “(looking for cat) | dog | mouse”.

Field limit operator limits subsequent searching to a given field. Normally, query will fail with an error message if
given field name does not exist in the searched index. However, that can be suppressed by specifying “@@relaxed”
option at the very beginning of the query:

@@relaxed @nosuchfield my query

This can be helpful when searching through heterogeneous indexes with different schemas.

Field position limit additionally restricts the searching to first N position within given field (or fields). For example,
“@body [50] hello” will not match the documents where the keyword ‘hello’ occurs at position 51 and below in the
body.

Proximity distance is specified in words, adjusted for word count, and applies to all words within quotes. For instance,
“cat dog mouse”~5 query means that there must be less than 8-word span which contains all 3 words, ie. “CAT aaa
bbb ccc DOG eee fff MOUSE” document will not match this query, because this span is exactly 8 words long.

Quorum matching operator introduces a kind of fuzzy matching. It will only match those documents that pass a given
threshold of given words. The example above (“the world is a wonderful place”/3) will match all documents that have
at least 3 of the 6 specified words. Operator is limited to 255 keywords. Instead of an absolute number, you can also
specify a number between 0.0 and 1.0 (standing for 0% and 100%), and Manticore will match only documents with at
least the specified percentage of given words. The same example above could also have been written “the world is a
wonderful place”/0.5 and it would match documents with at least 50% of the 6 words.

Strict order operator (aka operator “before”) will match the document only if its argument keywords occur in the
document exactly in the query order. For instance, “black << cat” query (without quotes) will match the document
“black and white cat” but not the “that cat was black” document. Order operator has the lowest priority. It can be
applied both to just keywords and more complex expressions, ie. this is a valid query:

(bag of words) << "exact phrase" << red|green|blue

Exact form keyword modifier will match the document only if the keyword occurred in exactly the specified form.
The default behavior is to match the document if the stemmed keyword matches. For instance, “runs” query will
match both the document that contains “runs” and the document that contains “running”, because both forms stem to
just “run” - while “=runs” query will only match the first document. Exact form operator requires index_exact_words
option to be enabled. This is a modifier that affects the keyword and thus can be used within operators such as phrase,
proximity, and quorum operators. It is possible to apply an exact form modifier to the phrase operator. It’s really just
syntax sugar - it adds an exact form modifier to all terms contained within the phrase.

="exact phrase"

Field-start and field-end keyword modifiers will make the keyword match only if it occurred at the very start or the
very end of a fulltext field, respectively. For instance, the query “^hello world$” (with quotes and thus combining
phrase operator and start/end modifiers) will only match documents that contain at least one field that has exactly
these two keywords.

Arbitrarily nested brackets and negations are allowed. However, the query must be possible to compute without
involving an implicit list of all documents:

// correct query
aaa -(bbb -(ccc ddd))

(continues on next page)

5.3. Extended query syntax 35

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

// queries that are non-computable
-aaa
aaa | -bbb

The phrase search operator may include a ‘match any term’ modifier. Terms within the phrase operator are position
significant. When the ‘match any term’ modifier is implemented, the position of the subsequent terms from that phrase
query will be shifted. Therefore, ‘match any’ has no impact on search performance.

"exact * phrase * * for terms"

NEAR operator is a generalized version of a proximity operator. The syntax is NEAR/N, it is case-sensitive, and no
spaces are allowed between the NEAR keyword, the slash sign, and the distance value.

The original proximity operator only worked on sets of keywords. NEAR is more generic and can accept arbitrary
subexpressions as its two arguments, matching the document when both subexpressions are found within N words of
each other, no matter in which order. NEAR is left associative and has the same (lowest) precedence as BEFORE.

You should also note how a (one NEAR/7 two NEAR/7 three) query using NEAR is not really equivalent
to a ("one two three"~7) one using keyword proximity operator. The difference here is that the proximity
operator allows for up to 6 non-matching words between all the 3 matching words, but the version with NEAR is less
restrictive: it would allow for up to 6 words between ‘one’ and ‘two’ and then for up to 6 more between that two-word
matching and a ‘three’ keyword.

SENTENCE and PARAGRAPH operators matches the document when both its arguments are within the same
sentence or the same paragraph of text, respectively. The arguments can be either keywords, or phrases, or the instances
of the same operator. Here are a few examples:

one SENTENCE two
one SENTENCE "two three"
one SENTENCE "two three" SENTENCE four

The order of the arguments within the sentence or paragraph does not matter. These operators only work on indexes
built with index_sp (sentence and paragraph indexing feature) enabled, and revert to a mere AND otherwise. Refer to
the index_sp directive documentation for the notes on what’s considered a sentence and a paragraph.

ZONE limit operator is quite similar to field limit operator, but restricts matching to a given in-field zone or a list
of zones. Note that the subsequent subexpressions are not required to match in a single contiguous span of a given
zone, and may match in multiple spans. For instance, (ZONE:th hello world) query will match this example
document:

<th>Table 1\. Local awareness of Hello Kitty brand.</th>
.. some table data goes here ..
<th>Table 2\. World-wide brand awareness.</th>

ZONE operator affects the query until the next field or ZONE limit operator, or the closing parenthesis. It only works
on the indexes built with zones support (see index_zones) and will be ignored otherwise.

ZONESPAN limit operator is similar to the ZONE operator, but requires the match to occur in a single contiguous
span. In the example above, (ZONESPAN:th hello world) would not match the document, since “hello” and
“world” do not occur within the same span.

MAYBE operator works much like | operator but doesn’t return documents which match only right subtree expression.

36 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5.4 Search results ranking

5.4.1 Ranking overview

Ranking (aka weighting) of the search results can be defined as a process of computing a so-called relevance (aka
weight) for every given matched document with regards to a given query that matched it. So relevance is in the end
just a number attached to every document that estimates how relevant the document is to the query. Search results can
then be sorted based on this number and/or some additional parameters, so that the most sought after results would
come up higher on the results page.

There is no single standard one-size-fits-all way to rank any document in any scenario. Moreover, there can not ever be
such a way, because relevance is subjective. As in, what seems relevant to you might not seem relevant to me. Hence,
in general case it’s not just hard to compute, it’s theoretically impossible.

So ranking in Manticore is configurable. It has a notion of a so-called ranker. A ranker can formally be defined as
a function that takes document and query as its input and produces a relevance value as output. In layman’s terms, a
ranker controls exactly how (using which specific algorithm) will Manticore assign weights to the document.

Previously, this ranking function was rigidly bound to the matching mode. So in the legacy matching modes (that
is, SPH_MATCH_ALL, SPH_MATCH_ANY, SPH_MATCH_PHRASE, and SPH_MATCH_BOOLEAN) you can
not choose the ranker. You can only do that in the SPH_MATCH_EXTENDED mode. (Which is the only mode
in SphinxQL and the suggested mode in SphinxAPI anyway.) To choose a non-default ranker you can either use
SetRankingMode() with SphinxAPI, or OPTION ranker clause in SELECT statement when using SphinxQL.

As a sidenote, legacy matching modes are internally implemented via the unified syntax anyway. When you use one of
those modes, Manticore just internally adjusts the query and sets the associated ranker, then executes the query using
the very same unified code path.

5.4.2 Available built-in rankers

Manticore ships with a number of built-in rankers suited for different purposes. A number of them uses two factors,
phrase proximity (aka LCS) and BM25. Phrase proximity works on the keyword positions, while BM25 works on the
keyword frequencies. Basically, the better the degree of the phrase match between the document body and the query,
the higher is the phrase proximity (it maxes out when the document contains the entire query as a verbatim quote).
And BM25 is higher when the document contains more rare words. We’ll save the detailed discussion for later.

Currently implemented rankers are:

• SPH_RANK_PROXIMITY_BM25, the default ranking mode that uses and combines both phrase proximity
and BM25 ranking.

• SPH_RANK_BM25, statistical ranking mode which uses BM25 ranking only (similar to most other full-text
engines). This mode is faster but may result in worse quality on queries which contain more than 1 keyword.

• SPH_RANK_NONE, no ranking mode. This mode is obviously the fastest. A weight of 1 is assigned to all
matches. This is sometimes called boolean searching that just matches the documents but does not rank them.

• SPH_RANK_WORDCOUNT, ranking by the keyword occurrences count. This ranker computes the per-field
keyword occurrence counts, then multiplies them by field weights, and sums the resulting values.

• SPH_RANK_PROXIMITY returns raw phrase proximity value as a result. This mode is internally used to
emulate SPH_MATCH_ALL queries.

• SPH_RANK_MATCHANY returns rank as it was computed in SPH_MATCH_ANY mode earlier, and is in-
ternally used to emulate SPH_MATCH_ANY queries.

• SPH_RANK_FIELDMASK returns a 32-bit mask with N-th bit corresponding to N-th fulltext field, numbering
from 0. The bit will only be set when the respective field has any keyword occurrences satisfying the query.

5.4. Search results ranking 37

Manticore Search Documentation, Release 2.6.1

• SPH_RANK_SPH04 is generally based on the default SPH_RANK_PROXIMITY_BM25 ranker, but addition-
ally boosts the matches when they occur in the very beginning or the very end of a text field. Thus, if a field
equals the exact query, SPH04 should rank it higher than a field that contains the exact query but is not equal
to it. (For instance, when the query is “Hyde Park”, a document entitled “Hyde Park” should be ranked higher
than a one entitled “Hyde Park, London” or “The Hyde Park Cafe”.)

• SPH_RANK_EXPR lets you specify the ranking formula in run time. It exposes a number of internal text
factors and lets you define how the final weight should be computed from those factors. You can find more
details about its syntax and a reference available factors in a subsection below.

You should specify the SPH_RANK_ prefix and use capital letters only when using the SetRankingMode() call from
the SphinxAPI. The API ports expose these as global constants. Using SphinxQL syntax, the prefix should be omitted
and the ranker name is case insensitive. Example:

// SphinxAPI
$client->SetRankingMode (SPH_RANK_SPH04);

// SphinxQL
mysql_query ("SELECT ... OPTION ranker=sph04");

Legacy matching modes rankers

Legacy matching modes automatically select a ranker as follows:

• SPH_MATCH_ALL uses SPH_RANK_PROXIMITY ranker;

• SPH_MATCH_ANY uses SPH_RANK_MATCHANY ranker;

• SPH_MATCH_PHRASE uses SPH_RANK_PROXIMITY ranker;

• SPH_MATCH_BOOLEAN uses SPH_RANK_NONE ranker.

38 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5.4.3 Quick summary of the ranking factors

Name Level Type Summary
max_lcs query int maximum possible LCS value for the current query
bm25 docu-

ment
int quick estimate of BM25(1.2, 0) without syntax support

bm25a(k1, b) docu-
ment

int precise BM25() value with configurable K1, B constants and syntax
support

bm25f(k1, b,
{field=weight, . . . })

docu-
ment

int precise BM25F() value with extra configurable field weights

field_mask docu-
ment

int bit mask of matched fields

query_word_count docu-
ment

int number of unique inclusive keywords in a query

doc_word_count docu-
ment

int number of unique keywords matched in the document

lcs field int Longest Common Subsequence between query and document, in words
user_weight field int user field weight
hit_count field int total number of keyword occurrences
word_count field int number of unique matched keywords
tf_idf field float sum(tf*idf) over matched keywords == sum(idf) over occurrences
min_hit_pos field int first matched occurrence position, in words, 1-based
min_best_span_pos field int first maximum LCS span position, in words, 1-based
exact_hit field bool whether query == field
min_idf field float min(idf) over matched keywords
max_idf field float max(idf) over matched keywords
sum_idf field float sum(idf) over matched keywords
exact_order field bool whether all query keywords were a) matched and b) in query order
min_gaps field int minimum number of gaps between the matched keywords over the

matching spans
lccs field int Longest Common Contiguous Subsequence between query and docu-

ment, in words
wlccs field float Weighted Longest Common Contiguous Subsequence, sum(idf) over

contiguous keyword spans
atc field float Aggregate Term Closeness, log(1+sum(idf1*idf2*pow(distance, -

1.75)) over the best pairs of keywords

5.4.4 Document-level ranking factors

A document-level factor is a numeric value computed by the ranking engine for every matched document with regards
to the current query. So it differs from a plain document attribute in that the attribute do not depend on the full text
query, while factors might. Those factors can be used anywhere in the ranking expression. Currently implemented
document-level factors are:

• bm25 (integer), a document-level BM25 estimate (computed without keyword occurrence filtering).

• max_lcs (integer), a query-level maximum possible value that the sum(lcs*user_weight) expression can ever
take. This can be useful for weight boost scaling. For instance, MATCHANY ranker formula uses this to
guarantee that a full phrase match in any field ranks higher than any combination of partial matches in all fields.

• field_mask (integer), a document-level 32-bit mask of matched fields.

• query_word_count (integer), the number of unique keywords in a query, adjusted for a number of excluded

5.4. Search results ranking 39

Manticore Search Documentation, Release 2.6.1

keywords. For instance, both (one one one one) and (one !two) queries should assign a value of 1 to
this factor, because there is just one unique non-excluded keyword.

• doc_word_count (integer), the number of unique keywords matched in the entire document.

5.4.5 Field-level ranking factors

A field-level factor is a numeric value computed by the ranking engine for every matched in-document text field with
regards to the current query. As more than one field can be matched by a query, but the final weight needs to be a
single integer value, these values need to be folded into a single one. To achieve that, field-level factors can only be
used within a field aggregation function, they can not be used anywhere in the expression. For example, you can not
use (lcs+bm25) as your ranking expression, as lcs takes multiple values (one in every matched field). You should
use (sum(lcs)+bm25) instead, that expression sums lcs over all matching fields, and then adds bm25 to that
per-field sum. Currently implemented field-level factors are:

• lcs (integer), the length of a maximum verbatim match between the document and the query, counted in
words. LCS stands for Longest Common Subsequence (or Subset). Takes a minimum value of 1 when only
stray keywords were matched in a field, and a maximum value of query keywords count when the entire query
was matched in a field verbatim (in the exact query keywords order). For example, if the query is ‘hello world’
and the field contains these two words quoted from the query (that is, adjacent to each other, and exactly in the
query order), lcs will be 2. For example, if the query is ‘hello world program’ and the field contains ‘hello
world’, lcs will be 2. Note that any subset of the query keyword works, not just a subset of adjacent keywords.
For example, if the query is ‘hello world program’ and the field contains ‘hello (test program)’, lcs will be 2
just as well, because both ‘hello’ and ‘program’ matched in the same respective positions as they were in the
query. Finally, if the query is ‘hello world program’ and the field contains ‘hello world program’, lcs will be
3. (Hopefully that is unsurprising at this point.)

• user_weight (integer), the user specified per-field weight (refer to SetFieldWeights() in SphinxAPI and OP-
TION field_weights in SphinxQL respectively). The weights default to 1 if not specified explicitly.

• hit_count (integer), the number of keyword occurrences that matched in the field. Note that a single key-
word may occur multiple times. For example, if ‘hello’ occurs 3 times in a field and ‘world’ occurs 5 times,
hit_count will be 8.

• word_count (integer), the number of unique keywords matched in the field. For example, if ‘hello’ and
‘world’ occur anywhere in a field, word_count will be 2, irregardless of how many times do both keywords
occur.

• tf_idf (float), the sum of TF/IDF over all the keywords matched in the field. IDF is the Inverse Document
Frequency, a floating point value between 0 and 1 that describes how frequent is the keywords (basically, 0
for a keyword that occurs in every document indexed, and 1 for a unique keyword that occurs in just a single
document). TF is the Term Frequency, the number of matched keyword occurrences in the field. As a side note,
tf_idf is actually computed by summing IDF over all matched occurrences. That’s by construction equivalent
to summing TF*IDF over all matched keywords.

• min_hit_pos (integer), the position of the first matched keyword occurrence, counted in words. Indexing
begins from position 1.

• min_best_span_pos (integer), the position of the first maximum LCS occurrences span. For example,
assume that our query was ‘hello world program’ and ‘hello world’ subphrase was matched twice in the field,
in positions 13 and 21. Assume that ‘hello’ and ‘world’ additionally occurred elsewhere in the field, but never
next to each other and thus never as a subphrase match. In that case, min_best_span_pos will be 13. Note
how for the single keyword queries min_best_span_pos will always equal min_hit_pos.

• exact_hit (boolean), whether a query was an exact match of the entire current field. Used in the SPH04
ranker.

40 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• min_idf, max_idf, and sum_idf (float). These factors respectively represent the min(idf), max(idf) and
sum(idf) over all keywords that were matched in the field.

• exact_order (boolean). Whether all of the query keywords were matched in the field in the exact query
order. For example, (microsoft office) query would yield exact_order=1 in a field with the following
contents: (We use Microsoft software in our office.). However, the very same query in a
(Our office is Microsoft free.) field would yield exact_order=0.

• min_gaps (integer), the minimum number of positional gaps between (just) the keywords matched in field.
Always 0 when less than 2 keywords match; always greater or equal than 0 otherwise.

For example, with a [big wolf] query, [big bad wolf] field would yield min_gaps=1; [big bad
hairy wolf] field would yield min_gaps=2; [the wolf was scary and big] field would yield
min_gaps=3; etc. However, a field like [i heard a wolf howl] would yield min_gaps=0, because
only one keyword would be matching in that field, and, naturally, there would be no gaps between the
_matched_keywords.

Therefore, this is a rather low-level, “raw” factor that you would most likely want to adjust before actually using
for ranking. Specific adjustments depend heavily on your data and the resulting formula, but here are a few ideas
you can start with: (a) any min_gaps based boosts could be simply ignored when word_count<2; (b) non-trivial
min_gaps values (i.e. when word_count>=2) could be clamped with a certain “worst case” constant while trivial
values (i.e. when min_gaps=0 and word_count<2) could be replaced by that constant; (c) a transfer function like
1/(1+min_gaps) could be applied (so that better, smaller min_gaps values would maximize it and worse, bigger
min_gaps values would fall off slowly); and so on.

• lccs (integer). Longest Common Contiguous Subsequence. A length of the longest subphrase that is common
between the query and the document, computed in keywords.

LCCS factor is rather similar to LCS but more restrictive, in a sense. While LCS could be greater than 1 though
no two query words are matched next to each other, LCCS would only get greater than 1 if there are exact,
contiguous query subphrases in the document. For example, (one two three four five) query vs (one hundred
three hundred five hundred) document would yield lcs=3, but lccs=1, because even though mutual dispositions
of 3 keywords (one, three, five) match between the query and the document, no 2 matching positions are actually
next to each other.

Note that LCCS still does not differentiate between the frequent and rare keywords; for that, see WLCCS.

• wlccs (float). Weighted Longest Common Contiguous Subsequence. A sum of IDFs of the keywords of the
longest subphrase that is common between the query and the document.

WLCCS is computed very similarly to LCCS, but every “suitable” keyword occurrence increases it by the key-
word IDF rather than just by 1 (which is the case with LCS and LCCS). That lets us rank sequences of more rare
and important keywords higher than sequences of frequent keywords, even if the latter are longer. For exam-
ple, a query (Zanzibar bed and breakfast) would yield lccs=1 for a (hotels of Zanzibar)
document, but lccs=3 against (London bed and breakfast), even though “Zanzibar” is actually some-
what more rare than the entire “bed and breakfast” phrase. WLCCS factor alleviates that problem by using the
keyword frequencies.

• atc (float). Aggregate Term Closeness. A proximity based measure that grows higher when the document
contains more groups of more closely located and more important (rare) query keywords. WARNING: you
should use ATC with OPTION idf=‘plain,tfidf_unnormalized’; otherwise you would get unexpected results.

ATC basically works as follows. For every keyword occurrence in the document, we compute the so called
term closeness. For that, we examine all the other closest occurrences of all the query keywords (keyword itself
included too) to the left and to the right of the subject occurrence, compute a distance dampening coefficient
as k = pow(distance, -1.75) for those occurrences, and sum the dampened IDFs. Thus for every occurrence of
every keyword, we get a “closeness” value that describes the “neighbors” of that occurrence. We then multiply
those per-occurrence closenesses by their respective subject keyword IDF, sum them all, and finally, compute a
logarithm of that sum.

5.4. Search results ranking 41

Manticore Search Documentation, Release 2.6.1

Or in other words, we process the best (closest) matched keyword pairs in the document, and compute pairwise
“closenesses” as the product of their IDFs scaled by the distance coefficient:

pair_tc = idf(pair_word1) * idf(pair_word2) * pow(pair_distance, -1.75)

We then sum such closenesses, and compute the final, log-dampened ATC value:

atc = log(1+sum(pair_tc))

Note that this final dampening logarithm is exactly the reason you should use OPTION idf=plain, because
without it, the expression inside the log() could be negative.

Having closer keyword occurrences actually contributes much more to ATC than having more frequent key-
words. Indeed, when the keywords are right next to each other, distance=1 and k=1; when there just one word
in between them, distance=2 and k=0.297, with two words between, distance=3 and k=0.146, and so on. At the
same time IDF attenuates somewhat slower. For example, in a 1 million document collection, the IDF values
for keywords that match in 10, 100, and 1000 documents would be respectively 0.833, 0.667, and 0.500. So a
keyword pair with two rather rare keywords that occur in just 10 documents each but with 2 other words in be-
tween would yield pair_tc = 0.101 and thus just barely outweigh a pair with a 100-doc and a 1000-doc keyword
with 1 other word between them and pair_tc = 0.099. Moreover, a pair of two unique, 1-doc keywords with 3
words between them would get a pair_tc = 0.088 and lose to a pair of two 1000-doc keywords located right next
to each other and yielding a pair_tc = 0.25. So, basically, while ATC does combine both keyword frequency and
proximity, it is still somewhat favoring the proximity.

5.4.6 Ranking factor aggregation functions

A field aggregation function is a single argument function that takes an expression with field-level factors, iterates it
over all the matched fields, and computes the final results. Currently implemented field aggregation functions are:

• sum, sums the argument expression over all matched fields. For instance, sum(1) should return a number of
matched fields.

• top, returns the greatest value of the argument over all matched fields.

5.4.7 Formula expressions for all the built-in rankers

Most of the other rankers can actually be emulated with the expression based ranker. You just need to pass a proper
expression. Such emulation is, of course, going to be slower than using the built-in, compiled ranker but still might
be of interest if you want to fine-tune your ranking formula starting with one of the existing ones. Also, the formulas
define the nitty gritty ranker details in a nicely readable fashion.

• SPH_RANK_PROXIMITY_BM25 = sum(lcsuser_weight)1000+bm25

• SPH_RANK_BM25 = bm25

• SPH_RANK_NONE = 1

• SPH_RANK_WORDCOUNT = sum(hit_count*user_weight)

• SPH_RANK_PROXIMITY = sum(lcs*user_weight)

• SPH_RANK_MATCHANY = sum((word_count+(lcs-1)max_lcs)user_weight)

• SPH_RANK_FIELDMASK = field_mask

• SPH_RANK_SPH04 = sum((4lcs+2(min_hit_pos==1)+exact_hit)*user_weight)*1000+bm25

42 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5.5 Expressions, functions, and operators

Manticore lets you use arbitrary arithmetic expressions both via SphinxQL and SphinxAPI, involving attribute values,
internal attributes (document ID and relevance weight), arithmetic operations, a number of built-in functions, and
user-defined functions. This section documents the supported operators and functions. Here’s the complete reference
list for quick access.

• Arithmetic operators: +, -, *, /, %, DIV, MOD

• Comparison operators: <, > <=, >=, =, <>

• Boolean operators: AND, OR, NOT

• Bitwise operators: &, |

• ABS()

• ALL()

• ANY()

• ATAN2()

• BIGINT()

• BITDOT()

• CEIL()

• CONTAINS()

• COS()

• CRC32()

• DAY()

• DOUBLE()

• EXP()

• FIBONACCI()

• FLOOR()

• GEODIST()

• GEOPOLY2D()

• GREATEST()

• HOUR()

• IDIV()

• IF()

• IN()

• INDEXOF()

• INTEGER()

• INTERVAL()

• LEAST()

• LENGTH()

5.5. Expressions, functions, and operators 43

Manticore Search Documentation, Release 2.6.1

• LN()

• LOG10()

• LOG2()

• MAX()

• MIN()

• MINUTE()

• MIN_TOP_SORTVAL()

• MIN_TOP_WEIGHT()

• MONTH()

• NOW()

• POLY2D()

• POW()

• RAND()

• REMAP()

• SECOND()

• SIN()

• SINT()

• SQRT()

• UINT()

• YEAR()

• YEARMONTH()

• YEARMONTHDAY()

5.5.1 Operators

• Arithmetic operators: +, -, *, /, %, DIV, MOD

The standard arithmetic operators. Arithmetic calculations involving those can be performed in three different
modes: (a) using single-precision, 32-bit IEEE 754 floating point values (the default), (**) using signed 32-
bit integers, (c) using 64-bit signed integers. The expression parser will automatically switch to integer mode
if there are no operations the result in a floating point value. Otherwise, it will use the default floating point
mode. For instance, a+b will be computed using 32-bit integers if both arguments are 32-bit integers; or using
64-bit integers if both arguments are integers but one of them is 64-bit; or in floats otherwise. However, a/**
or sqrt(a) will always be computed in floats, because these operations return a result of non-integer type.
To avoid the first, you can either use IDIV(a,**) or a DIV b form. Also, a*b will not be automatically
promoted to 64-bit when the arguments are 32-bit. To enforce 64-bit results, you can use BIGINT(). (But note
that if there are non-integer operations, BIGINT() will simply be ignored.)

• Comparison operators: <, > <=, >=, =, <>

Comparison operators (eg. = or <=) return 1.0 when the condition is true and 0.0 otherwise. For instance,
(a=b)+3 will evaluate to 4 when attribute ‘a’ is equal to attribute ‘b’, and to 3 when ‘a’ is not. Unlike MySQL,
the equality comparisons (ie. = and <> operators) introduce a small equality threshold (1e-6 by default). If the
difference between compared values is within the threshold, they will be considered equal.

44 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• Boolean operators: AND, OR, NOT

Boolean operators (AND, OR, NOT) behave as usual. They are left-associative and have the least priority
compared to other operators. NOT has more priority than AND and OR but nevertheless less than any other
operator. AND and OR have the same priority so brackets use is recommended to avoid confusion in complex
expressions.

• Bitwise operators: &, |

These operators perform bitwise AND and OR respectively. The operands must be of an integer types.

5.5.2 Numeric functions

• ABS()

Returns the absolute value of the argument.

• BITDOT()

BITDOT(mask, w0, w1, . . .) returns the sum of products of an each bit of a mask multiplied with its weight.
bit0*w0 + bit1*w1 + ...

• CEIL()

Returns the smallest integer value greater or equal to the argument.

• CONTAINS()

CONTAINS(polygon, x, y) checks whether the (x,y) point is within the given polygon, and returns 1 if true, or
0 if false. The polygon has to be specified using either the POLY2D() function or the GEOPOLY2D() function.
The former function is intended for “small” polygons, meaning less than 500 km (300 miles) a side, and it
doesn’t take into account the Earth’s curvature for speed. For larger distances, you should use GEOPOLY2D,
which tessellates the given polygon in smaller parts, accounting for the Earth’s curvature.

• COS()

Returns the cosine of the argument.

• DOUBLE() Forcibly promotes given argument to floating point type. Intended to help enforce evaluation of
numeric JSON fields.

• EXP()

Returns the exponent of the argument (e=2.718. . . to the power of the argument).

• FIBONACCI()

Returns the N-th Fibonacci number, where N is the integer argument. That is, arguments of 0 and up will
generate the values 0, 1, 1, 2, 3, 5, 8, 13 and so on. Note that the computations are done using 32-bit integer
math and thus numbers 48th and up will be returned modulo 2^32.

• FLOOR()

Returns the largest integer value lesser or equal to the argument.

• GEOPOLY2D()

GEOPOLY2D(x1,y1,x2,y2,x3,y3. . .) produces a polygon to be used with the CONTAINS() function. This
function takes into account the Earth’s curvature by tessellating the polygon into smaller ones, and should be
used for larger areas; see the POLY2D() function. The function expects coordinates to be in degrees, if radians
are used it will give same result as POLY2D().

5.5. Expressions, functions, and operators 45

Manticore Search Documentation, Release 2.6.1

• IDIV()

Returns the result of an integer division of the first argument by the second argument. Both arguments must be
of an integer type.

• LN()

Returns the natural logarithm of the argument (with the base of e=2.718. . .).

• LOG10()

Returns the common logarithm of the argument (with the base of 10).

• LOG2()

Returns the binary logarithm of the argument (with the base of 2).

• MAX()

Returns the bigger of two arguments.

• MIN()

Returns the smaller of two arguments.

• POLY2D()

POLY2D(x1,y1,x2,y2,x3,y3. . .) produces a polygon to be used with the CONTAINS() function. This polygon
assumes a flat Earth, so it should not be too large; see the POLY2D() function.

• POW()

Returns the first argument raised to the power of the second argument.

• SIN()

Returns the sine of the argument.

• SQRT()

Returns the square root of the argument.

• UINT()

Forcibly reinterprets given argument to 64-bit unsigned type.

5.5.3 Date and time functions

• DAY()

Returns the integer day of month (in 1..31 range) from a timestamp argument, according to the current timezone.

• MONTH()

Returns the integer month (in 1..12 range) from a timestamp argument, according to the current timezone.

• NOW()

Returns the current timestamp as an INTEGER.

• YEAR()

Returns the integer year (in 1969..2038 range) from a timestamp argument, according to the current timezone.

• YEARMONTH()

Returns the integer year and month code (in 196912..203801 range) from a timestamp argument, according to
the current timezone.

46 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• YEARMONTHDAY()

Returns the integer year, month, and date code (in 19691231..20380119 range) from a timestamp argument,
according to the current timezone.

• SECOND()

Returns the integer second (in 0..59 range) from a timestamp argument, according to the current timezone.

• MINUTE()

Returns the integer minute (in 0..59 range) from a timestamp argument, according to the current timezone.

• HOUR()

Returns the integer hour (in 0..23 range) from a timestamp argument, according to the current timezone.

5.5.4 Type conversion functions

• BIGINT()

Forcibly promotes the integer argument to 64-bit type, and does nothing on floating point argument. It’s intended
to help enforce evaluation of certain expressions (such as a*b) in 64-bit mode even though all the arguments
are 32-bit.

• INTEGER()

Forcibly promotes given argument to 64-bit signed type. Intended to help enforce evaluation of numeric JSON
fields.

• SINT()

Forcibly reinterprets its 32-bit unsigned integer argument as signed, and also expands it to 64-bit type (because
32-bit type is unsigned). It’s easily illustrated by the following example: 1-2 normally evaluates to 4294967295,
but SINT(1-2) evaluates to -1.

5.5.5 Comparison functions

• IF()

IF() behavior is slightly different that that of its MySQL counterpart. It takes 3 arguments, check whether the
1st argument is equal to 0.0, returns the 2nd argument if it is not zero, or the 3rd one when it is. Note that unlike
comparison operators, IF() does not use a threshold! Therefore, it’s safe to use comparison results as its 1st
argument, but arithmetic operators might produce unexpected results. For instance, the following two calls will
produce different results even though they are logically equivalent:

IF (sqrt(3)*sqrt(3)-3<>0, a, b)
IF (sqrt(3)*sqrt(3)-3, a, b)

In the first case, the comparison operator <> will return 0.0 (false)
because of a threshold, and ``IF()`` will always return ‘**’ as a
result. In the second one, the same ``sqrt(3)*sqrt(3)-3`` expression
will be compared with zero *without* threshold by the ``IF()``
function itself. But its value will be slightly different from zero
because of limited floating point calculations precision. Because of
that, the comparison with 0.0 done by ``IF()`` will not pass, and the
second variant will return ‘a’ as a result.

5.5. Expressions, functions, and operators 47

Manticore Search Documentation, Release 2.6.1

• IN()

IN(expr,val1,val2,. . .) takes 2 or more arguments, and returns 1 if 1st argument (expr) is equal to any of the
other arguments (val1..valN), or 0 otherwise. Currently, all the checked values (but not the expression itself!)
are required to be constant. (Its technically possible to implement arbitrary expressions too, and that might be
implemented in the future.) Constants are pre-sorted and then binary search is used, so IN() even against a big
arbitrary list of constants will be very quick. First argument can also be a MVA attribute. In that case, IN()
will return 1 if any of the MVA values is equal to any of the other arguments. IN() also supports IN(expr,
@uservar) syntax to check whether the value belongs to the list in the given global user variable. First
argument can be JSON attribute.

• INTERVAL()

INTERVAL(expr,point1,point2,point3,. . .), takes 2 or more arguments, and returns the index of the argument
that is less than the first argument: it returns 0 if expr<point1, 1 if point1<=expr<point2, and so on. It is required
that point1<point2<. . . <pointN for this function to work correctly.

5.5.6 Miscellaneous functions

• ALL()

ALL(cond FOR var IN json.array) applies to JSON arrays and returns 1 if condition is true for all elements in
array and 0 otherwise. ‘cond’ is a general expression which additionally can use ‘var’ as current value of an
array element within itself.

SELECT ALL(x>3 AND x<7 FOR x IN j.intarray) FROM test;

ALL(mva) is a special constructor for multi value attributes. When used in conjunction with comparison opera-
tors it returns 1 if all values compared are found among the MVA values.

SELECT * FROM test WHERE ALL(mymva)>10;

• ANY()

ANY(cond FOR var IN json.array) works similar to ALL() except for it returns 1 if condition is true for any
element in array.

ANY(mva) is a special constructor for multi value attributes. When used in conjunction with comparison oper-
ators it returns 1 if any of the values compared are found among the MVA values. ANY is used by default if no
constructor is used, however a warning will be raised about missing constructor.

• ATAN2()

Returns the arctangent function of two arguments, expressed in radians.

• CRC32()

Returns the CRC32 value of a string argument.

• GEODIST()

GEODIST(lat1, lon1, lat2, lon2, [. . .]) function computes geosphere distance between two given points speci-
fied by their coordinates. Note that by default both latitudes and longitudes must be in radians and the result
will be in meters. You can use arbitrary expression as any of the four coordinates. An optimized path will be
selected when one pair of the arguments refers directly to a pair attributes and the other one is constant.

GEODIST() also takes an optional 5th argument that lets you easily convert between input and output units, and
pick the specific geodistance formula to use. The complete syntax and a few examples are as follows:

48 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

GEODIST(lat1, lon1, lat2, lon2, { option=value, ... })

GEODIST(40.7643929, -73.9997683, 40.7642578, -73.9994565, {in=degrees, out=feet})

GEODIST(51.50, -0.12, 29.98, 31.13, {in=deg, out=mi}}

The known options and their values are:

– in = {deg | degrees | rad | radians}, specifies the input units;

– out = {m | meters | km | kilometers | ft | feet | mi | miles}, specifies the
output units;

– method = {adaptive | haversine}, specifies the geodistance calculation method.

The default method is “adaptive”. It is well optimized implementation that is both more precise and much faster
at all times than “haversine”.

• GREATEST()

GREATEST(attr_json.some_array) function takes JSON array as the argument, and returns the greatest value in
that array. Also works for MVA.

• INDEXOF()

INDEXOF(cond FOR var IN json.array) function iterates through all elements in array and returns index of first
element for which ‘cond’ is true and -1 if ‘cond’ is false for every element in array.

SELECT INDEXOF(name='John' FOR name IN j.peoples) FROM test;

• LEAST()

LEAST(attr_json.some_array) function takes JSON array as the argument, and returns the least value in that
array. Also works for MVA.

• LENGTH()

LENGTH(attr_mva) function returns amount of elements in MVA set. It works with both 32-bit and 64-bit MVA
attributes. LENGTH(attr_json) returns length of a field in JSON. Return value depends on type of a field. For
example LENGTH(json_attr.some_int) always returns 1 and LENGTH(json_attr.some_array) returns number
of elements in array.

• MIN_TOP_SORTVAL()

Returns sort key value of the worst found element in the current top-N matches if sort key is float and 0 otherwise.

• MIN_TOP_WEIGHT() Returns weight of the worst found element in the current top-N matches.

• PACKEDFACTORS()

PACKEDFACTORS() can be used in queries, either to just see all the weighting factors calculated when doing
the matching, or to provide a binary attribute that can be used to write a custom ranking UDF. This function
works only if expression ranker is specified and the query is not a full scan, otherwise it will return an error.
PACKEDFACTORS() can take an optional argument that disables ATC ranking factor calculation:

PACKEDFACTORS({no_atc=1})

Calculating ATC slows down query processing considerably, so this option can be useful if you need to see the
ranking factors, but do not need ATC. PACKEDFACTORS() can also be told to format its output as JSON:

PACKEDFACTORS({json=1})

5.5. Expressions, functions, and operators 49

Manticore Search Documentation, Release 2.6.1

The respective outputs in either key-value pair or JSON format would look as follows below. (Note that the
examples below are wrapped for readability; actual returned values would be single-line.)

mysql> SELECT id, PACKEDFACTORS() FROM test1
-> WHERE MATCH('test one') OPTION ranker=expr('1') \G

*************************** 1\. row ***************************
id: 1

packedfactors(): bm25=569, bm25a=0.617197, field_mask=2, doc_word_count=2,
field1=(lcs=1, hit_count=2, word_count=2, tf_idf=0.152356,

min_idf=-0.062982, max_idf=0.215338, sum_idf=0.152356, min_hit_pos=4,
min_best_span_pos=4, exact_hit=0, max_window_hits=1, min_gaps=2,
exact_order=1, lccs=1, wlccs=0.215338, atc=-0.003974),

word0=(tf=1, idf=-0.062982),
word1=(tf=1, idf=0.215338)

1 row in set (0.00 sec)

mysql> SELECT id, PACKEDFACTORS({json=1}) FROM test1
-> WHERE MATCH('test one') OPTION ranker=expr('1') \G

*************************** 1\. row ***************************
id: 1

packedfactors({json=1}):
{

"bm25": 569,
"bm25a": 0.617197,
"field_mask": 2,
"doc_word_count": 2,
"fields": [

{
"lcs": 1,
"hit_count": 2,
"word_count": 2,
"tf_idf": 0.152356,
"min_idf": -0.062982,
"max_idf": 0.215338,
"sum_idf": 0.152356,
"min_hit_pos": 4,
"min_best_span_pos": 4,
"exact_hit": 0,
"max_window_hits": 1,
"min_gaps": 2,
"exact_order": 1,
"lccs": 1,
"wlccs": 0.215338,
"atc": -0.003974

}
],
"words": [

{
"tf": 1,
"idf": -0.062982

},
{

"tf": 1,
"idf": 0.215338

}
]

(continues on next page)

50 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

}
1 row in set (0.01 sec)

This function can be used to implement custom ranking functions in UDFs, as in

SELECT *, CUSTOM_RANK(PACKEDFACTORS()) AS r
FROM my_index
WHERE match('hello')
ORDER BY r DESC
OPTION ranker=expr('1');

Where CUSTOM_RANK() is a function implemented in an UDF. It should declare a SPH_UDF_FACTORS
structure (defined in sphinxudf.h), initialize this structure, unpack the factors into it before usage, and
deinitialize it afterwards, as follows:

SPH_UDF_FACTORS factors;
sphinx_factors_init(&factors);
sphinx_factors_unpack((DWORD*)args->arg_values[0], &factors);
// ... can use the contents of factors variable here ...
sphinx_factors_deinit(&factors);

PACKEDFACTORS() data is available at all query stages, not just when doing the initial matching and ranking
pass. That enables another particularly interesting application of PACKEDFACTORS(), namely re-ranking.

In the example just above, we used an expression-based ranker with a dummy expression, and sorted the result
set by the value computed by our UDF. In other words, we used the UDF to rank all our results. Assume now,
for the sake of an example, that our UDF is extremely expensive to compute and has a throughput of just 10,000
calls per second. Assume that our query matches 1,000,000 documents. To maintain reasonable performance,
we would then want to use a (much) simpler expression to do most of our ranking, and then apply the expensive
UDF to only a few top results, say, top-100 results. Or, in other words, build top-100 results using a simpler
ranking function and then re-rank those with a complex one. We can do that just as well with subselects:

SELECT * FROM (
SELECT *, CUSTOM_RANK(PACKEDFACTORS()) AS r
FROM my_index WHERE match('hello')
OPTION ranker=expr('sum(lcs)*1000+bm25')
ORDER BY WEIGHT() DESC
LIMIT 100

) ORDER BY r DESC LIMIT 10

In this example, expression-based ranker will be called for every matched document to compute WEIGHT().
So it will get called 1,000,000 times. But the UDF computation can be postponed until the outer sort. And it
also will be done for just the top-100 matches by WEIGHT(), according to the inner limit. So the UDF will
only get called 100 times. And then the final top-10 matches by UDF value will be selected and returned to the
application.

For reference, in the distributed case PACKEDFACTORS() data gets sent from the agents to master in a binary
format, too. This makes it technically feasible to implement additional re-ranking pass (or passes) on the master
node, if needed.

If used with SphinxQL but not called from any UDFs, the result of PACKEDFACTORS() is simply formatted
as plain text, which can be used to manually assess the ranking factors. Note that this feature is not currently
supported by the Manticore API.

• REMAP()

REMAP(condition, expression, (cond1, cond2, . . .), (expr1, expr2, . . .)) function allows you to make some

5.5. Expressions, functions, and operators 51

Manticore Search Documentation, Release 2.6.1

exceptions of an expression values depending on condition values. Condition expression should always result
integer, expression can result in integer or float.

SELECT REMAP(userid, karmapoints, (1, 67), (999, 0)) FROM users;
SELECT REMAP(id%10, salary, (0), (0.0)) FROM employes;

• rand()

RAND(seed) function returns a random float between 0..1. Optional, an integer seed value can be specified.

5.6 Sorting modes

There are the following result sorting modes available:

• SPH_SORT_RELEVANCE mode, that sorts by relevance in descending order (best matches first);

• SPH_SORT_ATTR_DESC mode, that sorts by an attribute in descending order (bigger attribute values first);

• SPH_SORT_ATTR_ASC mode, that sorts by an attribute in ascending order (smaller attribute values first);

• SPH_SORT_TIME_SEGMENTS mode, that sorts by time segments (last hour/day/week/month) in descending
order, and then by relevance in descending order;

• SPH_SORT_EXTENDED mode, that sorts by SQL-like combination of columns in ASC/DESC order;

• SPH_SORT_EXPR mode, that sorts by an arithmetic expression.

SPH_SORT_RELEVANCE ignores any additional parameters and always sorts matches by relevance rank.
All other modes require an additional sorting clause, with the syntax depending on specific mode.
SPH_SORT_ATTR_ASC, SPH_SORT_ATTR_DESC and SPH_SORT_TIME_SEGMENTS modes require simply
an attribute name. SPH_SORT_RELEVANCE is equivalent to sorting by “@weight DESC, @id ASC” in ex-
tended sorting mode, SPH_SORT_ATTR_ASC is equivalent to “attribute ASC, @weight DESC, @id ASC”, and
SPH_SORT_ATTR_DESC to “attribute DESC, @weight DESC, @id ASC” respectively.

5.6.1 SPH_SORT_TIME_SEGMENTS mode

In SPH_SORT_TIME_SEGMENTS mode, attribute values are split into so-called time segments, and then sorted by
time segment first, and by relevance second.

The segments are calculated according to the current timestamp at the time when the search is performed, so the results
would change over time. The segments are as follows:

• last hour,

• last day,

• last week,

• last month,

• last 3 months,

• everything else.

These segments are hardcoded, but it is trivial to change them if necessary.

This mode was added to support searching through blogs, news headlines, etc. When using time segments, recent
records would be ranked higher because of segment, but within the same segment, more relevant records would be
ranked higher - unlike sorting by just the timestamp attribute, which would not take relevance into account at all.

52 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5.6.2 SPH_SORT_EXTENDED mode

In SPH_SORT_EXTENDED mode, you can specify an SQL-like sort expression with up to 5 attributes (including
internal attributes), eg:

@relevance DESC, price ASC, @id DESC

Both internal attributes (that are computed by the engine on the fly) and user attributes that were configured for this
index are allowed. Internal attribute names must start with magic @-symbol; user attribute names can be used as is.
In the example above, @relevance and @id are internal attributes and price is user-specified.

Known internal attributes are:

• @id (match ID)

• @weight (match weight)

• @rank (match weight)

• @relevance (match weight)

• @random (return results in random order)

@rank and @relevance are just additional aliases to @weight.

5.6.3 SPH_SORT_EXPR mode

Expression sorting mode lets you sort the matches by an arbitrary arithmetic expression, involving attribute values,
internal attributes (@id and @weight), arithmetic operations, and a number of built-in functions. Here’s an example:

$cl->SetSortMode (SPH_SORT_EXPR,
"@weight + (user_karma + ln(pageviews))*0.1");

The operators and functions supported in the expressions are discussed in Expressions, functions, and operators.

5.7 Grouping (clustering) search results

Sometimes it could be useful to group (or in other terms, cluster) search results and/or count per-group match counts
- for instance, to draw a nice graph of how much matching blog posts were there per each month; or to group Web
search results by site; or to group matching forum posts by author; etc.

In theory, this could be performed by doing only the full-text search in Manticore and then using found IDs to group
on SQL server side. However, in practice doing this with a big result set (10K-10M matches) would typically kill
performance.

To avoid that, Manticore offers so-called grouping mode. It is enabled with SetGroupBy() API call. When grouping,
all matches are assigned to different groups based on group-by value. This value is computed from specified attribute
using one of the following built-in functions:

• SPH_GROUPBY_DAY, extracts year, month and day in YYYYMMDD format from timestamp;

• SPH_GROUPBY_WEEK, extracts year and first day of the week number (counting from year start) in
YYYYNNN format from timestamp;

• SPH_GROUPBY_MONTH, extracts month in YYYYMM format from timestamp;

• SPH_GROUPBY_YEAR, extracts year in YYYY format from timestamp;

• SPH_GROUPBY_ATTR, uses attribute value itself for grouping.

5.7. Grouping (clustering) search results 53

Manticore Search Documentation, Release 2.6.1

The final search result set then contains one best match per group. Grouping function value and per-group match count
are returned along as “virtual” attributes named @group and @count respectively.

The result set is sorted by group-by sorting clause, with the syntax similar to `SPH_SORT_EXTENDED sorting clause
<SPH_SORT_EXTENDED_mode>‘ syntax. In addition to @id and @weight, group-by sorting clause may also
include:

• @group (groupby function value),

• @count (amount of matches in group).

The default mode is to sort by groupby value in descending order, ie. by @group desc.

On completion, total_found result parameter would contain total amount of matching groups over he whole index.

WARNING: grouping is done in fixed memory and thus its results are only approximate; so there might be more
groups reported in total_found than actually present. @count might also be underestimated. To reduce inac-
curacy, one should raise max_matches. If max_matches allows to store all found groups, results will be 100%
correct.

For example, if sorting by relevance and grouping by "published" attribute with SPH_GROUPBY_DAY function,
then the result set will contain

• one most relevant match per each day when there were any matches published,

• with day number and per-day match count attached,

• sorted by day number in descending order (ie. recent days first).

Aggregate functions (AVG(), MIN(), MAX(), SUM()) are supported through SetSelect() API call when using GROUP
BY.

5.8 Distributed searching

To scale well, Manticore has distributed searching capabilities. Distributed searching is useful to improve query
latency (ie. search time) and throughput (ie. max queries/sec) in multi-server, multi-CPU or multi-core environments.
This is essential for applications which need to search through huge amounts data (ie. billions of records and terabytes
of text).

The key idea is to horizontally partition (HP) searched data across search nodes and then process it in parallel.

Partitioning is done manually. You should

• setup several instances of Manticore programs (indexer and searchd) on different servers;

• make the instances index (and search) different parts of data;

• configure a special distributed index on some of the searchd instances;

• and query this index.

This index only contains references to other local and remote indexes - so it could not be directly reindexed, and you
should reindex those indexes which it references instead.

When searchd receives a query against distributed index, it does the following:

1. connects to configured remote agents;

2. issues the query;

3. sequentially searches configured local indexes (while the remote agents are searching);

4. retrieves remote agents’ search results;

54 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5. merges all the results together, removing the duplicates;

6. sends the merged results to client.

From the application’s point of view, there are no differences between searching through a regular index, or a dis-
tributed index at all. That is, distributed indexes are fully transparent to the application, and actually there’s no way to
tell whether the index you queried was distributed or local.

Any searchd instance could serve both as a master (which aggregates the results) and a slave (which only does local
searching) at the same time. This has a number of uses:

1. every machine in a cluster could serve as a master which searches the whole cluster, and search requests could
be balanced between masters to achieve a kind of HA (high availability) in case any of the nodes fails;

2. if running within a single multi-CPU or multi-core machine, there would be only 1 searchd instance querying
itself as an agent and thus utilizing all CPUs/core.

It is scheduled to implement better HA support which would allow to specify which agents mirror each other, do health
checks, keep track of alive agents, load-balance requests, etc.

5.9 Query log formats

Two query log formats are supported. Plain text format is still the default one. However, while it might be more
convenient for manual monitoring and review, but hard to replay for benchmarks, it only logs search queries but not
the other types of requests, does not always contain the complete search query data, etc. The default text format is
also harder (and sometimes impossible) to replay for benchmarking purposes. The sphinxql format alleviates that.
It aims to be complete and automatable, even though at the cost of brevity and readability.

5.9.1 Plain log format

By default, searchd logs all successfully executed search queries into a query log file. Here’s an example:

[Fri Jun 29 21:17:58 2007] 0.004 sec 0.004 sec [all/0/rel 35254 (0,20)] [lj] test
[Fri Jun 29 21:20:34 2007] 0.024 sec 0.024 sec [all/0/rel 19886 (0,20) @channel_id]
→˓[lj] test

This log format is as follows:

[query-date] real-time wall-time [match-mode/filters-count/sort-mode
total-matches (offset,limit) @groupby-attr] [index-name] query

• real-time is a time measured just from start to finish of the query

• wall-time like real-time but not including waiting for agents and merging result sets time

Match mode can take one of the following values:

• “all” for SPH_MATCH_ALL mode;

• “any” for SPH_MATCH_ANY mode;

• “phr” for SPH_MATCH_PHRASE mode;

• “bool” for SPH_MATCH_BOOLEAN mode;

• “ext” for SPH_MATCH_EXTENDED mode;

• “ext2” for SPH_MATCH_EXTENDED2 mode;

5.9. Query log formats 55

Manticore Search Documentation, Release 2.6.1

• “scan” if the full scan mode was used, either by being specified with SPH_MATCH_FULLSCAN, or if the
query was empty (as documented under Matching Modes)

Sort mode can take one of the following values:

• “rel” for SPH_SORT_RELEVANCE mode;

• “attr-” for SPH_SORT_ATTR_DESC mode;

• “attr+” for SPH_SORT_ATTR_ASC mode;

• “tsegs” for SPH_SORT_TIME_SEGMENTS mode;

• “ext” for SPH_SORT_EXTENDED mode.

Additionally, if searchd was started with --iostats, there will be a block of data after where the index(es)
searched are listed.

A query log entry might take the form of:

[Fri Jun 29 21:17:58 2007] 0.004 sec [all/0/rel 35254 (0,20)] [lj]
[ios=6 kb=111.1 ms=0.5] test

This additional block is information regarding I/O operations in performing the search: the number of file I/O opera-
tions carried out, the amount of data in kilobytes read from the index files and time spent on I/O operations (although
there is a background processing component, the bulk of this time is the I/O operation time).

5.9.2 SphinxQL log format

This new log format introduced with the goals begin logging everything and then some, and in a format easy to
automate (for instance, automatically replay). SphinxQL log format can either be enabled via the query_log_format
directive in the configuration file, or switched back and forth on the fly with the SET GLOBAL query_log_format=. . .
statement via SphinxQL. In the new format, the example from the previous section would look as follows. (Wrapped
below for readability, but with just one query per line in the actual log.)

/* Fri Jun 29 21:17:58.609 2007 2011 conn 2 real 0.004 wall 0.004 found 35254 */
SELECT * FROM lj WHERE MATCH('test') OPTION ranker=proximity;

/* Fri Jun 29 21:20:34 2007.555 conn 3 real 0.024 wall 0.024 found 19886 */
SELECT * FROM lj WHERE MATCH('test') GROUP BY channel_id
OPTION ranker=proximity;

Note that all requests would be logged in this format, including those sent via SphinxAPI and SphinxSE, not just those
sent via SphinxQL. Also note, that this kind of logging works only with plain log files and will not work if you use
‘syslog’ service for logging.

The features of SphinxQL log format compared to the default text one are as follows.

• All request types should be logged. (This is still work in progress.)

• Full statement data will be logged where possible.

• Errors and warnings are logged.

• The log should be automatically replayable via SphinxQL.

• Additional performance counters (currently, per-agent distributed query times) are logged.

Use sphinxql:compact_in to shorten your IN() clauses in log if you have too much values in it.

Every request (including both SphinxAPI and SphinxQL) request must result in exactly one log line. All request types,
including INSERT, CALL SNIPPETS, etc will eventually get logged, though as of time of this writing, that is a work

56 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

in progress). Every log line must be a valid SphinxQL statement that reconstructs the full request, except if the logged
request is too big and needs shortening for performance reasons. Additional messages, counters, etc can be logged in
the comments section after the request.

5.10 MySQL protocol support and SphinxQL

Manticore searchd daemon supports MySQL binary network protocol and can be accessed with regular MySQL API.
For instance, ‘mysql’ CLI client program works well. Here’s an example of querying Manticore using MySQL client:

$ mysql -P 9306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 0.9.9-dev (r1734)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT * FROM test1 WHERE MATCH('test')
-> ORDER BY group_id ASC OPTION ranker=bm25;

+------+--------+----------+------------+
| id | weight | group_id | date_added |
+------+--------+----------+------------+
4	1442	2	1231721236
2	2421	123	1231721236
1	2421	456	1231721236
+------+--------+----------+------------+
3 rows in set (0.00 sec)

Note that mysqld was not even running on the test machine. Everything was handled by searchd itself.

The new access method is supported in addition to native APIs which all still work perfectly well. In fact, both access
methods can be used at the same time. Also, native API is still the default access method. MySQL protocol support
needs to be additionally configured. This is a matter of 1-line config change, adding a new listener with mysql41
specified as a protocol:

listen = localhost:9306:mysql41

Just supporting the protocol and not the SQL syntax would be useless so Manticore now also supports a subset of
SQL that we dubbed SphinxQL. It supports the standard querying all the index types with SELECT, modifying RT
indexes with INSERT, REPLACE, and DELETE, and much more. Full SphinxQL reference is available in SphinxQL
reference.

5.11 Multi-queries

Multi-queries, or query batches, let you send multiple queries to Manticore in one go (more formally, one network
request).

Two API methods that implement multi-query mechanism are AddQuery() and RunQueries(). You can also run mul-
tiple queries with SphinxQL, see the section called :ref:‘multi-statement_queries. (In fact, regular Query() call is
internally implemented as a single AddQuery() call immediately followed by RunQueries() call.) AddQuery() cap-
tures the current state of all the query settings set by previous API calls, and memorizes the query. RunQueries()
actually sends all the memorized queries, and returns multiple result sets. There are no restrictions on the queries at
all, except just a sanity check on a number of queries in a single batch (see max_batch_queries).

5.10. MySQL protocol support and SphinxQL 57

Manticore Search Documentation, Release 2.6.1

Why use multi-queries? Generally, it all boils down to performance. First, by sending requests to searchd in a batch
instead of one by one, you always save a bit by doing less network roundtrips. Second, and somewhat more important,
sending queries in a batch enables searchd to perform certain internal optimizations. As new types of optimizations
are being added over time, it generally makes sense to pack all the queries into batches where possible, so that simply
upgrading Manticore to a new version would automatically enable new optimizations. In the case when there aren’t
any possible batch optimizations to apply, queries will be processed one by one internally.

Why (or rather when) not use multi-queries? Multi-queries requires all the queries in a batch to be independent,
and sometimes they aren’t. That is, sometimes query B is based on query A results, and so can only be set up after
executing query A. For instance, you might want to display results from a secondary index if and only if there were
no results found in a primary index. Or maybe just specify offset into 2nd result set based on the amount of matches
in the 1st result set. In that case, you will have to use separate queries (or separate batches).

There are two major optimizations to be aware of: common query optimization and common subtree optimization.

Common query optimization means that searchd will identify all those queries in a batch where only the sorting
and group-by settings differ, and only perform searching once. For instance, if a batch consists of 3 queries, all of
them are for “ipod nano”, but 1st query requests top-10 results sorted by price, 2nd query groups by vendor ID and
requests top-5 vendors sorted by rating, and 3rd query requests max price, full-text search for “ipod nano” will only
be performed once, and its results will be reused to build 3 different result sets.

So-called faceted searching is a particularly important case that benefits from this optimization. Indeed, faceted
searching can be implemented by running a number of queries, one to retrieve search results themselves, and a few
other ones with same full-text query but different group-by settings to retrieve all the required groups of results (top-
3 authors, top-5 vendors, etc). And as long as full-text query and filtering settings stay the same, common query
optimization will trigger, and greatly improve performance.

Common subtree optimization is even more interesting. It lets searchd exploit similarities between batched full-
text queries. It identifies common full-text query parts (subtrees) in all queries, and caches them between queries. For
instance, look at the following query batch:

donald trump president
donald trump barack obama john mccain
donald trump speech

There’s a common two-word part (“donald trump”) that can be computed only once, then cached and shared across
the queries. And common subtree optimization does just that. Per-query cache size is strictly controlled by sub-
tree_docs_cache and subtree_hits_cache directives (so that caching all sixteen gazillions of documents that match “i
am” does not exhaust the RAM and instantly kill your server).

Here’s a code sample (in PHP) that fire the same query in 3 different sorting modes:

require ("sphinxapi.php");
$cl = new ManticoreClient ();
$cl->SetMatchMode (SPH_MATCH_EXTENDED);

$cl->SetSortMode (SPH_SORT_RELEVANCE);
$cl->AddQuery ("the", "lj");
$cl->SetSortMode (SPH_SORT_EXTENDED, "published desc");
$cl->AddQuery ("the", "lj");
$cl->SetSortMode (SPH_SORT_EXTENDED, "published asc");
$cl->AddQuery ("the", "lj");
$res = $cl->RunQueries();

How to tell whether the queries in the batch were actually optimized? If they were, respective query log will have a
“multiplier” field that specifies how many queries were processed together:

58 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

[Sun Jul 12 15:18:17.000 2009] 0.040 sec x3 [ext/0/rel 747541 (0,20)] [lj] the
[Sun Jul 12 15:18:17.000 2009] 0.040 sec x3 [ext/0/ext 747541 (0,20)] [lj] the
[Sun Jul 12 15:18:17.000 2009] 0.040 sec x3 [ext/0/ext 747541 (0,20)] [lj] the

Note the “x3” field. It means that this query was optimized and processed in a sub-batch of 3 queries. For reference,
this is how the regular log would look like if the queries were not batched:

[Sun Jul 12 15:18:17.062 2009] 0.059 sec [ext/0/rel 747541 (0,20)] [lj] the
[Sun Jul 12 15:18:17.156 2009] 0.091 sec [ext/0/ext 747541 (0,20)] [lj] the
[Sun Jul 12 15:18:17.250 2009] 0.092 sec [ext/0/ext 747541 (0,20)] [lj] the

Note how per-query time in multi-query case was improved by a factor of 1.5x to 2.3x, depending on a particular
sorting mode. In fact, for both common query and common subtree optimizations, there were reports of 3x and even
more improvements, and that’s from production instances, not just synthetic tests.

5.12 Collations

Collations essentially affect the string attribute comparisons. They specify both the character set encoding and the
strategy that Manticore uses to compare strings when doing ORDER BY or GROUP BY with a string attribute in-
volved.

String attributes are stored as is when indexing, and no character set or language information is attached to them.
That’s okay as long as Manticore only needs to store and return the strings to the calling application verbatim. But
when you ask Manticore to sort by a string value, that request immediately becomes quite ambiguous.

First, single-byte (ASCII, or ISO-8859-1, or Windows-1251) strings need to be processed differently that the UTF-8
ones that may encode every character with a variable number of bytes. So we need to know what is the character set
type to interpret the raw bytes as meaningful characters properly.

Second, we additionally need to know the language-specific string sorting rules. For instance, when sorting according
to US rules in en_US locale, the accented character ‘ï’ (small letter i with diaeresis) should be placed somewhere after
‘z’. However, when sorting with French rules and fr_FR locale in mind, it should be placed between ‘i’ and ‘j’. And
some other set of rules might choose to ignore accents at all, allowing ‘ï’ and ‘i’ to be mixed arbitrarily.

Third, but not least, we might need case-sensitive sorting in some scenarios and case-insensitive sorting in some others.

Collations combine all of the above: the character set, the language rules, and the case sensitivity. Manticore currently
provides the following four collations.

1. libc_ci

2. libc_cs

3. utf8_general_ci

4. binary

The first two collations rely on several standard C library (libc) calls and can thus support any locale that is installed
on your system. They provide case-insensitive (_ci) and case-sensitive (_cs) comparisons respectively. By default
they will use C locale, effectively resorting to bytewise comparisons. To change that, you need to specify a different
available locale using collation_libc_locale directive. The list of locales available on your system can usually be
obtained with the locale command:

$ locale -a
C
en_AG
en_AU.utf8

(continues on next page)

5.12. Collations 59

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

en_BW.utf8
en_CA.utf8
en_DK.utf8
en_GB.utf8
en_HK.utf8
en_IE.utf8
en_IN
en_NG
en_NZ.utf8
en_PH.utf8
en_SG.utf8
en_US.utf8
en_ZA.utf8
en_ZW.utf8
es_ES
fr_FR
POSIX
ru_RU.utf8
ru_UA.utf8

The specific list of the system locales may vary. Consult your OS documentation to install additional needed locales.

utf8_general_ci and binary locales are built-in into Manticore. The first one is a generic collation for UTF-8
data (without any so-called language tailoring); it should behave similar to utf8_general_ci collation in MySQL.
The second one is a simple bytewise comparison.

Collation can be overridden via SphinxQL on a per-session basis using SET collation_connection statement.
All subsequent SphinxQL queries will use this collation. SphinxAPI and SphinxSE queries will use the server default
collation, as specified in collation_server configuration directive. Manticore currently defaults to libc_ci collation.

Collations should affect all string attribute comparisons, including those within ORDER BY and GROUP BY, so
differently ordered or grouped results can be returned depending on the collation chosen. Note that collations don’t
affect full-text searching, for that use charset_table.

5.13 Query cache

Query cache stores a compressed result set in memory, and then reuses it for subsequent queries where possible. You
can configure it using the following directives:

• qcache_max_bytes, a limit on the RAM use for cached queries storage. Defaults to 16 MB. Setting
qcache_max_bytes to 0 completely disables the query cache.

• qcache_thresh_msec, the minimum wall query time to cache. Queries that completed faster than this will not be
cached. Defaults to 3000 msec, or 3 seconds.

• qcache_ttl_sec, cached entry TTL, or time to live. Queries will stay cached for this much. Defaults to 60
seconds, or 1 minute.

These settings can be changed on the fly using the SET GLOBAL statement:

mysql> SET GLOBAL qcache_max_bytes=128000000;

These changes are applied immediately, and the cached result sets that no longer satisfy the constraints are immediately
discarded. When reducing the cache size on the fly, MRU (most recently used) result sets win.

Query cache works as follows. When it’s enabled, every full-text search result gets completely stored in memory. That
happens after full-text matching, filtering, and ranking, so basically we store total_found {docid,weight} pairs.

60 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

Compressed matches can consume anywhere from 2 bytes to 12 bytes per match on average, mostly depending on
the deltas between the subsequent docids. Once the query completes, we check the wall time and size thresholds, and
either save that compressed result set for reuse, or discard it.

Note how the query cache impact on RAM is thus not limited by qcache_max_bytes! If you run, say, 10 concur-
rent queries, each of them matching upto 1M matches (after filters), then the peak temporary RAM use will be in the
40 MB to 240 MB range, even if in the end the queries are quick enough and do not get cached.

Queries can then use cache when the index, the full-text query (ie. MATCH() contents), and the ranker are all a match,
and filters are compatible. Meaning:

• The full-text part within MATCH() must be a bytewise match. Add a single extra space, and that is now a
different query where the query cache is concerned.

• The ranker (and its parameters if any, for user-defined rankers) must be a bytewise match.

• The filters must be a superset of the original filters. That is, you can add extra filters and still hit the cache. (In
this case, the extra filters will be applied to the cached result.) But if you remove one, that will be a new query
again.

Cache entries expire with TTL, and also get invalidated on index rotation, or on TRUNCATE, or on ATTACH. Note
that at the moment entries are not invalidated on arbitrary RT index writes! So a cached query might be returning
older results for the duration of its TTL.

Current cache status can be inspected with in SHOW STATUS through the qcache_XXX variables:

mysql> SHOW STATUS LIKE 'qcache%';
+-----------------------+----------+
| Counter | Value |
+-----------------------+----------+
qcache_max_bytes	16777216
qcache_thresh_msec	3000
qcache_ttl_sec	60
qcache_cached_queries	0
qcache_used_bytes	0
qcache_hits	0
+-----------------------+----------+
6 rows in set (0.00 sec)

5.14 MySQL storage engine (SphinxSE)

5.14.1 SphinxSE overview

SphinxSE is MySQL storage engine which can be compiled into MySQL server 5.x using its pluggable architecture.
It is not available for MySQL 4.x series. It also requires MySQL 5.0.22 or higher in 5.0.x series, or MySQL 5.1.12 or
higher in 5.1.x series.

Despite the name, SphinxSE does not actually store any data itself. It is actually a built-in client which allows MySQL
server to talk to searchd, run search queries, and obtain search results. All indexing and searching happen outside
MySQL.

Obvious SphinxSE applications include:

• easier porting of MySQL FTS applications to Manticore;

• allowing Manticore use with programming languages for which native APIs are not available yet;

• optimizations when additional Manticore result set processing on MySQL side is required (eg. JOINs with
original document tables, additional MySQL-side filtering, etc).

5.14. MySQL storage engine (SphinxSE) 61

Manticore Search Documentation, Release 2.6.1

Installing SphinxSE

You will need to obtain a copy of MySQL sources, prepare those, and then recompile MySQL binary. MySQL sources
(mysql-5.x.yy.tar.gz) could be obtained from http://dev.mysql.com Web site.

For some MySQL versions, there are delta tarballs with already prepared source versions available from Manticore
Web site. After unzipping those over original sources MySQL would be ready to be configured and built with Manti-
core support.

If such tarball is not available, or does not work for you for any reason, you would have to prepare sources manually.
You will need to GNU Autotools framework (autoconf, automake and libtool) installed to do that.

Compiling MySQL 5.0.x with SphinxSE

1. copy sphinx.5.0.yy.diff patch file into MySQL sources directory and run

$ patch -p1 < sphinx.5.0.yy.diff

If there’s no .diff file exactly for the specific version you need to build, try applying .diff with closest version num-
bers. It is important that the patch should apply with no rejects.

2. in MySQL sources directory, run

$ sh BUILD/autorun.sh

3. in MySQL sources directory, create sql/sphinx directory in and copy all files in mysqlse directory from
Manticore sources there. Example:

$ cp -R /root/builds/sphinx-0.9.7/mysqlse /root/builds/mysql-5.0.24/sql/sphinx

4. configure MySQL and enable Manticore engine:

$./configure --with-sphinx-storage-engine

5. build and install MySQL:

$ make
$ make install

Compiling MySQL 5.1.x with SphinxSE

1. in MySQL sources directory, create storage/sphinx directory in and copy all files in mysqlse directory
from Manticore sources there. Example:

$ cp -R /root/builds/sphinx-0.9.7/mysqlse /root/builds/mysql-5.1.14/storage/sphinx

2. in MySQL sources directory, run

$ sh BUILD/autorun.sh

3. configure MySQL and enable Manticore engine:

$./configure --with-plugins=sphinx

4. build and install MySQL:

62 Chapter 5. Searching

http://dev.mysql.com

Manticore Search Documentation, Release 2.6.1

$ make
$ make install

Checking SphinxSE installation

To check whether SphinxSE has been successfully compiled into MySQL, launch newly built servers, run mysql client
and issue SHOW ENGINES query. You should see a list of all available engines. Manticore should be present and
“Support” column should contain “YES”:

mysql> show engines;
+------------+----------+---
→˓+
| Engine | Support | Comment
→˓|
+------------+----------+---
→˓+
| MyISAM | DEFAULT | Default engine as of MySQL 3.23 with great performance
→˓|
...

| SPHINX | YES | Manticore storage engine
→˓ |
...

+------------+----------+---
→˓+
13 rows in set (0.00 sec)

Using SphinxSE

To search via SphinxSE, you would need to create special ENGINE=SPHINX “search table”, and then SELECT from
it with full text query put into WHERE clause for query column.

Let’s begin with an example create statement and search query:

CREATE TABLE t1
(

id INTEGER UNSIGNED NOT NULL,
weight INTEGER NOT NULL,
query VARCHAR(3072) NOT NULL,
group_id INTEGER,
INDEX(query)

) ENGINE=SPHINX CONNECTION="sphinx://localhost:9312/test";

SELECT * FROM t1 WHERE query='test it;mode=any';

First 3 columns of search table must have a types of INTEGER UNSINGED or BIGINT for the 1st column (document
id), INTEGER or BIGINT for the 2nd column (match weight), and VARCHAR or TEXT for the 3rd column (your
query), respectively. This mapping is fixed; you can not omit any of these three required columns, or move them
around, or change types. Also, query column must be indexed; all the others must be kept unindexed. Columns’
names are ignored so you can use arbitrary ones.

Additional columns must be either INTEGER, TIMESTAMP, BIGINT, VARCHAR, or FLOAT. They will be bound to
attributes provided in Manticore result set by name, so their names must match attribute names specified in sphinx.
conf. If there’s no such attribute name in Manticore search results, column will have NULL values.

5.14. MySQL storage engine (SphinxSE) 63

Manticore Search Documentation, Release 2.6.1

Special “virtual” attributes names can also be bound to SphinxSE columns. _sph_ needs to be used instead of
@ for that. For instance, to obtain the values of @groupby, @count, or @distinct virtual attributes, use
_sph_groupby, _sph_count or _sph_distinct column names, respectively.

CONNECTION string parameter can be used to specify default searchd host, port and indexes for queries issued using
this table. If no connection string is specified in CREATE TABLE, index name “*” (ie. search all indexes) and
localhost:9312 are assumed. Connection string syntax is as follows:

CONNECTION="sphinx://HOST:PORT/INDEXNAME"

You can change the default connection string later:

mysql> ALTER TABLE t1 CONNECTION="sphinx://NEWHOST:NEWPORT/NEWINDEXNAME";

You can also override all these parameters per-query.

As seen in example, both query text and search options should be put into WHERE clause on search query column (ie.
3rd column); the options are separated by semicolons; and their names from values by equality sign. Any number of
options can be specified. Available options are:

• query - query text;

• mode - matching mode. Must be one of “all”, “any”, “phrase”, “boolean”, or “extended”. Default is “all”;

• sort - match sorting mode. Must be one of “relevance”, “attr_desc”, “attr_asc”, “time_segments”, or “extended”.
In all modes besides “relevance” attribute name (or sorting clause for “extended”) is also required after a colon:

... WHERE query='test;sort=attr_asc:group_id';

... WHERE query='test;sort=extended:@weight desc, group_id asc';

• offset - offset into result set, default is 0;

• limit - amount of matches to retrieve from result set, default is 20;

• index - names of the indexes to search:

... WHERE query='test;index=test1;';

... WHERE query='test;index=test1,test2,test3;';

• minid, maxid - min and max document ID to match;

• weights - comma-separated list of weights to be assigned to Manticore full-text fields:

... WHERE query='test;weights=1,2,3;';

• filter, !filter - comma-separated attribute name and a set of values to match:

only include groups 1, 5 and 19
... WHERE query='test;filter=group_id,1,5,19;';

exclude groups 3 and 11
... WHERE query='test;!filter=group_id,3,11;';

• range, !range - comma-separated (integer or bigint) Manticore attribute name, and min and max values to match:

include groups from 3 to 7, inclusive
... WHERE query='test;range=group_id,3,7;';

exclude groups from 5 to 25
... WHERE query='test;!range=group_id,5,25;';

64 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• floatrange, !floatrange - comma-separated (floating point) Manticore attribute name, and min and max values to
match:

filter by a float size
... WHERE query='test;floatrange=size,2,3;';

pick all results within 1000 meter from geoanchor
... WHERE query='test;floatrange=@geodist,0,1000;';

• maxmatches - per-query max matches value, as in max_matches parameter to SetLimits() API call:

... WHERE query='test;maxmatches=2000;';

• cutoff - maximum allowed matches, as in cutoff parameter to SetLimits() API call:

... WHERE query='test;cutoff=10000;';

• maxquerytime - maximum allowed query time (in milliseconds), as in SetMaxQueryTime() API call:

... WHERE query='test;maxquerytime=1000;';

• groupby - group-by function and attribute, corresponding to SetGroupBy() API call:

... WHERE query='test;groupby=day:published_ts;';

... WHERE query='test;groupby=attr:group_id;';

• groupsort - group-by sorting clause:

... WHERE query='test;groupsort=@count desc;';

• distinct - an attribute to compute COUNT(DISTINCT) for when doing group-by, as in SetGroupDistinct() API
call:

... WHERE query='test;groupby=attr:country_id;distinct=site_id';

• indexweights - comma-separated list of index names and weights to use when searching through several indexes:

... WHERE query='test;indexweights=idx_exact,2,idx_stemmed,1;';

• fieldweights - comma-separated list of per-field weights that can be used by the ranker:

... WHERE query='test;fieldweights=title,10,abstract,3,content,1;';

• comment - a string to mark this query in query log (mapping to $comment parameter in Query() API call):

... WHERE query='test;comment=marker001;';

• select - a string with expressions to compute (mapping to SetSelect() API call):

... WHERE query='test;select=2*a+3*** as myexpr;';

• host, port - remote searchd host name and TCP port, respectively:

... WHERE query='test;host=sphinx-test.loc;port=7312;';

• ranker - a ranking function to use with “extended” matching mode, as in SetRankingMode() API call (the
only mode that supports full query syntax). Known values are “proximity_bm25”, “bm25”, “none”, “word-
count”, “proximity”, “matchany”, “fieldmask”, “sph04”, “expr:EXPRESSION” syntax to support expression-

5.14. MySQL storage engine (SphinxSE) 65

Manticore Search Documentation, Release 2.6.1

based ranker (where EXPRESSION should be replaced with your specific ranking formula), and “ex-
port:EXPRESSION”:

... WHERE query='test;mode=extended;ranker=bm25;';

... WHERE query='test;mode=extended;ranker=expr:sum(lcs);';

The “export” ranker works exactly like ranker=expr, but it stores the per-document factor values, while
ranker=expr discards them after computing the final WEIGHT() value. Note that ranker=export is meant to
be used but rarely, only to train a ML (machine learning) function or to define your own ranking function by
hand, and never in actual production. When using this ranker, you’ll probably want to examine the output of
the RANKFACTORS() function that produces a string with all the field level factors for each document.

SELECT *, WEIGHT(), RANKFACTORS()
FROM myindex
WHERE MATCH('dog')
OPTION ranker=export('100*bm25')

would produce something like

*************************** 1\. row ***************************
id: 555617

published: 1110067331
channel_id: 1059819

title: 7
content: 428

weight(): 69900
rankfactors(): bm25=699, bm25a=0.666478, field_mask=2,
doc_word_count=1, field1=(lcs=1, hit_count=4, word_count=1,
tf_idf=1.038127, min_idf=0.259532, max_idf=0.259532, sum_idf=0.259532,
min_hit_pos=120, min_best_span_pos=120, exact_hit=0,
max_window_hits=1), word1=(tf=4, idf=0.259532)

*************************** 2\. row ***************************
id: 555313

published: 1108438365
channel_id: 1058561

title: 8
content: 249

weight(): 68500
rankfactors(): bm25=685, bm25a=0.675213, field_mask=3,
doc_word_count=1, field0=(lcs=1, hit_count=1, word_count=1,
tf_idf=0.259532, min_idf=0.259532, max_idf=0.259532, sum_idf=0.259532,
min_hit_pos=8, min_best_span_pos=8, exact_hit=0, max_window_hits=1),
field1=(lcs=1, hit_count=2, word_count=1, tf_idf=0.519063,
min_idf=0.259532, max_idf=0.259532, sum_idf=0.259532, min_hit_pos=36,
min_best_span_pos=36, exact_hit=0, max_window_hits=1), word1=(tf=3,
idf=0.259532)

• geoanchor - geodistance anchor, as in SetGeoAnchor() API call. Takes 4 parameters which are latitude and
longitude attribute names, and anchor point coordinates respectively:

... WHERE query='test;geoanchor=latattr,lonattr,0.123,0.456';

One very important note that it is much more efficient to allow Manticore to perform sorting, filtering and slicing the
result set than to raise max matches count and use WHERE, ORDER BY and LIMIT clauses on MySQL side. This
is for two reasons. First, Manticore does a number of optimizations and performs better than MySQL on these tasks.
Second, less data would need to be packed by searchd, transferred and unpacked by SphinxSE.

Additional query info besides result set could be retrieved with SHOW ENGINE SPHINX STATUS statement:

66 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

mysql> SHOW ENGINE SPHINX STATUS;
+--------+-------+---+
| Type | Name | Status |
+--------+-------+---+
| SPHINX | stats | total: 25, total found: 25, time: 126, words: 2 |
| SPHINX | words | sphinx:591:1256 soft:11076:15945 |
+--------+-------+---+
2 rows in set (0.00 sec)

This information can also be accessed through status variables. Note that this method does not require super-user
privileges.

mysql> SHOW STATUS LIKE 'sphinx_%';
+--------------------+----------------------------------+
| Variable_name | Value |
+--------------------+----------------------------------+
sphinx_total	25
sphinx_total_found	25
sphinx_time	126
sphinx_word_count	2
sphinx_words	sphinx:591:1256 soft:11076:15945
+--------------------+----------------------------------+
5 rows in set (0.00 sec)

You could perform JOINs on SphinxSE search table and tables using other engines. Here’s an example with “docu-
ments” from example.sql:

mysql> SELECT content, date_added FROM test.documents docs
-> JOIN t1 ON (docs.id=t1.id)
-> WHERE query="one document;mode=any";
+-------------------------------------+---------------------+
| content | docdate |
+-------------------------------------+---------------------+
| this is my test document number two | 2006-06-17 14:04:28 |
| this is my test document number one | 2006-06-17 14:04:28 |
+-------------------------------------+---------------------+
2 rows in set (0.00 sec)

mysql> SHOW ENGINE SPHINX STATUS;
+--------+-------+---+
| Type | Name | Status |
+--------+-------+---+
| SPHINX | stats | total: 2, total found: 2, time: 0, words: 2 |
| SPHINX | words | one:1:2 document:2:2 |
+--------+-------+---+
2 rows in set (0.00 sec)

5.14.2 Building snippets (excerpts) via MySQL

SphinxSE also includes a UDF function that lets you create snippets through MySQL. The functionality is fully similar
to BuildExcerprts API call but accessible through MySQL+SphinxSE.

The binary that provides the UDF is named sphinx.so and should be automatically built and installed to proper
location along with SphinxSE itself. If it does not get installed automatically for some reason, look for sphinx.so
in the build directory and copy it to the plugins directory of your MySQL instance. After that, register the UDF using
the following statement:

5.14. MySQL storage engine (SphinxSE) 67

Manticore Search Documentation, Release 2.6.1

CREATE FUNCTION sphinx_snippets RETURNS STRING SONAME 'sphinx.so';

Function name must be sphinx_snippets, you can not use an arbitrary name. Function arguments are as follows:

Prototype: function sphinx_snippets (document, index, words, [options]);

Document and words arguments can be either strings or table columns. Options must be specified like this: '
value' AS option_name. For a list of supported options, refer to BuildExcerprts() API call. The only
UDF-specific additional option is named 'sphinx' and lets you specify searchd location (host and
port).

Usage examples:

SELECT sphinx_snippets('hello world doc', 'main', 'world',
'sphinx://192.168.1.1/' AS sphinx, true AS exact_phrase,
'[**]' AS before_match, '[/**]' AS after_match)

FROM documents;

SELECT title, sphinx_snippets(text, 'index', 'mysql php') AS text
FROM sphinx, documents
WHERE query='mysql php' AND sphinx.id=documents.id;

5.15 Percolate query

Note: This is a new feature, not production ready yet, just for testing purposes mostly for now. Changes will occur in
future updates.

The percolate query is used to match documents against queries stored in a index. It is also called “search in reverse”
as it works opposite to a regular search where documents are stored in an index and queries are issued against the
index.

Queries are stored in a special RealTime index and they can be added, deleted and listed using IN-
SERT/DELETE/SELECT statements similar way as it’s done for a regular index.

Checking if a document matches any of the predefined criterias (queries) can be done with the CALL PQ function,
which returns a list of the matched queries. Note that it does not add documents to the percolate index. You need to
use another index (regular or RealTime) in which you will insert documents to perform regular searches.

5.15.1 Tags

A percolate query can have tags. tags can be set for the query with INSERT statement. Later on a user might list
queries with specific tags with SELECT statement or delete query(es) with DELETE statement.

5.15.2 Filters

A percolate query can have filters. filters are set for the query with INSERT statement. Documents can be
then filtered according to the filters with CALL PQ statement.

68 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

5.15.3 Index

A percolate query works only for percolate index type. Its configuration is similar to Real-time index, however
the declaration of fields and attributes can be omitted, in this case the index is created with default field text and
attribute gid.

index pq
{

type = percolate
path = path/index_name
min_infix_len = 4

}

5.15.4 INSERT

To store a query the INSERT statement looks like

INSERT INTO index_name (query[, tags, filters, id]) VALUES (query_terms, tags_list,
→˓filters, query_id);
INSERT INTO index_name (query, tags, filters) VALUES ('full text query terms', 'tags
→˓', 'filters');
INSERT INTO index_name (query) VALUES ('full text query terms');
INSERT INTO index_name VALUES ('full text query terms', 'tags');
INSERT INTO index_name VALUES ('full text query terms');

where tags and filters and id are optional fields. In case no schema declared for the INSERT statement te first
field will be full-text query and the optional second field will be tags.

filters is a string and has the same format as SphinxQL WHERE clause.

To replace existed query, REPLACE statement with query id field should be used.

5.15.5 CALL PQ

To search for queries matching a document(s) the CALL PQ statement is used which looks like

CALL PQ ('index_name', 'single document', 0 as docs, 0 as docs_json, 0 as verbose);
CALL PQ ('index_name', ('multiple documents', 'go this way'), 0 as docs_json);

The document in CALL PQ can be JSON encoded string or raw string. Fields and attributes mapping are allowed for
JSON documents only.

CALL PQ ('pq', (
'{"title":"header text", "body":"post context", "timestamp":11 }',
'{"title":"short post", "counter":7 }'
));

CALL PQ can have multiple options set as option_name.

Here are default values for the options:

• docs_json - 1 (enabled), to treat document(s) as JSON encoded string or raw string otherwise

• docs - 0 (disabled), to provide per query documents matched at result set

• verbose - 0 (disabled), to provide extended info on matching at SHOW META

• query - 0 (disabled), to provide all query fields stored, such as query, tags, filters

5.15. Percolate query 69

Manticore Search Documentation, Release 2.6.1

5.15.6 List stored queries

To list stored queries in index the SELECT statement looks like

SELECT * FROM index_name;
SELECT * FROM index_name WHERE tags='tags list';
SELECT * FROM index_name WHERE uid IN (11,35,101);

In case tags provided matching queries will be shown if any tags from the SELECT statement match tags in the
stored query. In case uid provided range or value list filter will be used to filter out stored queries.

The SELECT supports count(*) and count(*) alias to get number of of percolate queries. Any values are
just ignored there however count(*) should provide the total amount of queries stored.

mysql> select count(*) c from pq;
+------+
| c |
+------+
| 3 |
+------+

5.15.7 Delete query

To delete a stored percolate query(es) in index the DELETE statement looks like

DELETE FROM index_name WHERE id=1;
DELETE FROM index_name WHERE tags='tags list';

In case tags provided the query will be deleted if any tags from the DELETE statement match any of its tags.

To delete all stored query(es) in index there is TRUNCATE statement looks like

TRUNCATE RTINDEX index_name;

5.15.8 Meta

Meta information is kept for documents on “CALL PQ” and can be retrieved with SHOW META call.

SHOW META output after CALL PQ looks like

+-------------------------+-----------+
| Name | Value |
+-------------------------+-----------+
Total	0.010 sec
Queries matched	950
Document matches	1500
Total queries stored	1000
Term only queries	998
+-------------------------+-----------+

With entries:

• Total - total time spent for matching the document(s)

• Queries matched - how many stored queries match the document(s)

• Document matches - how many times the documents match the queries stored in the index

70 Chapter 5. Searching

Manticore Search Documentation, Release 2.6.1

• Total queries stored - how many queries are stored in the index at all

• Term only queries - how many queries in the index have terms. The rest of the queries have extended query
syntax

5.15.9 Reconfigure

As well as for RealTime indexes ALTER RECONFIGURE command is also supported for percolate query index. It
allows to reconfigure percolate index on the fly without deleting and repopulating the index with queries back.

mysql> desc pq1;
+-------+--------+
| Field | Type |
+-------+--------+
id	bigint
text	field
body	field
k	uint
+-------+--------+

mysql> select * from pq1;
+------+-------+------+-------------+
| UID | Query | Tags | Filters |
+------+-------+------+-------------+
1	test		k=4
2	test		k IN (4,6)
3	test		
+------+-------+------+-------------+

Add JSON attribute to the index config rt_attr_json = json_data, then issue ALTER RECONFIGURE

mysql> desc pq1;
+-----------+--------+
| Field | Type |
+-----------+--------+
id	bigint
text	field
body	field
k	uint
json_data	json
+-----------+--------+

5.15. Percolate query 71

Manticore Search Documentation, Release 2.6.1

72 Chapter 5. Searching

CHAPTER 6

Extending

6.1 UDFs (User Defined Functions)

Our expression engine can be extended with user defined functions, or UDFs for short, like this:

SELECT id, attr1, myudf(attr2, attr3+attr4) ...

You can load and unload UDFs dynamically into searchd without having to restart the daemon, and used them in
expressions when searching, ranking, etc. Quick summary of the UDF features is as follows.

• UDFs can take integer (both 32-bit and 64-bit), float, string, MVA, or PACKEDFACTORS() arguments.

• UDFs can return integer, float, or string values.

• UDFs can check the argument number, types, and names during the query setup phase, and raise errors.

• Aggregation UDFs are not yet supported (but might be in the future).

UDFs have a wide variety of uses, for instance:

• adding custom mathematical or string functions;

• accessing the database or files from within Manticore;

• implementing complex ranking functions.

UDFs reside in the external dynamic libraries (.so files on UNIX and .dll on Windows systems). Library files need to
reside in a trusted folder specified by plugin_dir directive, for obvious security reasons: securing a single folder is easy;
letting anyone install arbitrary code into searchd is a risk. You can load and unload them dynamically into searchd
with CREATE FUNCTION and DROP FUNCTION SphinxQL statements respectively. Also, you can seamlessly
reload UDFs (and other plugins) with RELOAD PLUGINS statement. Manticore keeps track of the currently loaded
functions, that is, every time you create or drop an UDF, searchd writes its state to the sphinxql_state file as a plain
good old SQL script.

Once you successfully load an UDF, you can use it in your SELECT or other statements just as well as any of the
builtin functions:

73

Manticore Search Documentation, Release 2.6.1

SELECT id, MYCUSTOMFUNC(groupid, authorname), ... FROM myindex

Multiple UDFs (and other plugins) may reside in a single library. That library will only be loaded once. It gets
automatically unloaded once all the UDFs and plugins from it are dropped.

In theory you can write an UDF in any language as long as its compiler is able to import standard C header, and
emit standard dynamic libraries with properly exported functions. Of course, the path of least resistance is to write
in either C++ or plain C. We provide an example UDF library written in plain C and implementing several functions
(demonstrating a few different techniques) along with our source code, see src/udfexample.c. That example includes
src/sphinxudf.h header file definitions of a few UDF related structures and types. For most UDFs and plugins, a mere
#include "sphinxudf.h", like in the example, should be completely sufficient, too. However, if you’re writing
a ranking function and need to access the ranking signals (factors) data from within the UDF, you will also need to
compile and link with src/sphinxudf.c (also available in our source code), because the implementations of the
fuctions that let you access the signal data from within the UDF reside in that file.

Both sphinxudf.h header and sphinxudf.c are standalone. So you can copy around those files only; they do
not depend on any other bits of Manticore source code.

Within your UDF, you must implement and export only a couple functions, literally. First, for UDF interface version
control, you must define a function int LIBRARYNAME_ver(), where LIBRARYNAME is the name of your li-
brary file, and you must return SPH_UDF_VERSION (a value defined in sphinxudf.h) from it. Here’s an example.

#include <sphinxudf.h>

// our library will be called udfexample.so, thus, so it must define
// a version function named udfexample_ver()
int udfexample_ver()
{

return SPH_UDF_VERSION;
}

That protects you from accidentally loading a library with a mismatching UDF interface version into a newer or
older searchd. Second, yout must implement the actual function, too. sphinx_int64_t testfunc (
SPH_UDF_INIT * init, SPH_UDF_ARGS * args, char * error_flag) { return 123; }

UDF function names in SphinxQL are case insensitive. However, the respective C function names are not, they need
to be all lower-case, or the UDF will not load. More importantly, it is vital that a) the calling convention is C (aka
__cdecl), b) arguments list matches the plugin system expectations exactly, and c) the return type matches the one
you specify in CREATE FUNCTION. Unfortunately, there is no (easy) way for us to check for those mistakes when
loading the function, and they could crash the server and/or result in unexpected results. Last but not least, all the C
functions you implement need to be thread-safe.

The first argument, a pointer to SPH_UDF_INIT structure, is essentially a pointer to our function state. It is option. In
the example just above the function is stateless, it simply returns 123 every time it gets called. So we do not have to
define an initialization function, and we can simply ignore that argument.

The second argument, a pointer to SPH_UDF_ARGS, is the most important one. All the actual call arguments
are passed to your UDF via this structure; it contians the call argument count, names, types, etc. So whether your
function gets called like SELECT id, testfunc(1) or like SELECT id, testfunc('abc'
, 1000*id+gid, WEIGHT()) or anyhow else, it will receive the very same SPH_UDF_ARGS structure in
all of these cases. However, the data passed in the args structure will be different. In the first example
args->arg_count will be set to 1, in the second example it will be set to 3, args->arg_types array will
contain different type data, and so on.

Finally, the third argument is an error flag. UDF can raise it to indicate that some kinda of an internal error happened,
the UDF can not continue, and the query should terminate early. You should not use this for argument type checks or
for any other error reporting that is likely to happen during normal use. This flag is designed to report sudden critical
runtime errors, such as running out of memory.

74 Chapter 6. Extending

https://github.com/manticoresoftware/manticore/blob/master/src/udfexample.c
https://github.com/manticoresoftware/manticore/blob/master/src/sphinxudf.h

Manticore Search Documentation, Release 2.6.1

If we wanted to, say, allocate temporary storage for our function to use, or check upfront whether the arguments are
of the supported types, then we would need to add two more functions, with UDF initialization and deinitialization,
respectively.

int testfunc_init (SPH_UDF_INIT * init, SPH_UDF_ARGS * args,
char * error_message)

{
// allocate and initialize a little bit of temporary storage
init->func_data = malloc (sizeof(int));

(int)init->func_data = 123;

// return a success code
return 0;

}

void testfunc_deinit (SPH_UDF_INIT * init)
{

// free up our temporary storage
free (init->func_data);

}

Note how testfunc_init() also receives the call arguments structure. By the time it is called it does not receive
any actual values, so the args->arg_values will be NULL. But the argument names and types are known and
will be passed. You can check them in the initialization function and return an error if they are of an unsupported type.

UDFs can receive arguments of pretty much any valid internal Manticore type. Refer to sphinx_udf_argtype
enumeration in sphinxudf.h for a full list. Most of the types map straightforwardly to the respective
C types. The most notable exception is the SPH_UDF_TYPE_FACTORS argument type. You get that
type by calling your UDF with a PACKEDFACTOR() argument. It’s data is a binary blob in a certain in-
ternal format, and to extract individual ranking signals from that blob, you need to use either of the two
sphinx_factors_XXX() or sphinx_get_YYY_factor() families of functions. The first family consists
of just 3 functions, sphinx_factors_init() that initializes the unpacked SPH_UDF_FACTORS structure,
sphinx_factors_unpack() that unpacks a binary blob into it, and sphinx_factors_deinit() that
cleans up an deallocates the SPH_UDF_FACTORS. So you need to call init() and unpack(), then you can use the
SPH_UDF_FACTORS fields, and then you need to cleanup with deinit(). That is simple, but results in a bunch of
memory allocations per each processed document, and might be slow. The other interface, consisting of a bunch of
sphinx_get_YYY_factor() functions, is a little more wordy to use, but accesses the blob data directly and
guarantees that there will be zero allocations. So for top-notch ranking UDF performance, you want to use that one.

As for the return types, UDFs can currently return a signle INTEGER, BIGINT, FLOAT, or STRING value. The
C function return type should be sphinx_int64_t, sphinx_int64_t, double, or char* respectively. In the last case you
must use args->fn_malloc function to allocate the returned string values. Internally in your UDF you can use
whatever you want, so the testfunc_init() example above is correct code even though it uses malloc() directly:
you manage that pointer yourself, it gets freed up using a matching free() call, and all is well. However, the returned
strings values are managed by Manticore and we have our own allocator, so for the return values specifically, you need
to use it too.

Depending on how your UDFs are used in the query, the main function call (testfunc() in our example) might be
called in a rather different volume and order. Specifically,

• UDFs referenced in WHERE, ORDER BY, or GROUP BY clauses must and will be evaluated for every matched
document. They will be called in the natural matching order.

• without subselects, UDFs that can be evaluated at the very last stage over the final result set will be evaluated
that way, but before applying the LIMIT clause. They will be called in the result set order.

• with subselects, such UDFs will also be evaluated after applying the inner LIMIT clause.

The calling sequence of the other functions is fixed, though. Namely,

6.1. UDFs (User Defined Functions) 75

Manticore Search Documentation, Release 2.6.1

• testfunc_init() is called once when initializing the query. It can return a non-zero code to indicate a
failure; in that case query will be terminated, and the error message from the error_message buffer will be
returned.

• testfunc() is called for every eligible row (see above), whenever Manticore needs to compute the UDF
value. It can also indicate an (internal) failure error by writing a non-zero byte value to error_flag. In that
case, it is guaranteed that will no more be called for subsequent rows, and a default return value of 0 will be
substituted. Manticore might or might not choose to terminate such queries early, neither behavior is currently
guaranteed.

• testfunc_deinit() is called once when the query processing (in a given index shard) ends.

We do not yet support aggregation functions. In other words, your UDFs will be called for just a single document at a
time and are expected to return some value for that document. Writing a function that can compute an aggregate value
like AVG() over the entire group of documents that share the same GROUP BY key is not yet possible. However, you
can use UDFs within the builtin aggregate functions: that is, even though MYCUSTOMAVG() is not supported yet,
AVG(MYCUSTOMFUNC()) should work alright!

UDFs are local. In order to use them on a cluster, you have to put the same library on all its nodes and run CREATEs
on all the nodes too. This might change in the future versions.

6.2 Plugins

Here’s the complete plugin type list.

• UDF plugins;

• ranker plugins;

• indexing-time token filter plugins;

• query-time token filter plugins.

This section discusses writing and managing plugins in general; things specific to writing this or that type of a plugin
are then discussed in their respective subsections.

So, how do you write and use a plugin? Four-line crash course goes as follows:

• create a dynamic library (either .so or.dll), most likely in C or C++;

• load that plugin into searchd using CREATE PLUGIN;

• invoke it using the plugin specific calls (typically using this or that OPTION).

• to unload or reload a plugin use DROP PLUGIN and RELOAD PLUGINS respectively.

Note that while UDFs are first-class plugins they are nevertheless installed using a separate CREATE FUNCTION
statement. It lets you specify the return type neatly so there was especially little reason to ruin backwards compatibility
and change the syntax.

Dynamic plugins are supported in workers = threads <workers> and workers = thread_pool <workers> mode only.
Multiple plugins (and/or UDFs) may reside in a single library file. So you might choose to either put all your project-
specific plugins in a single common uber-library; or you might choose to have a separate library for every UDF and
plugin; that is up to you.

Just as with UDFs, you want to include src/sphinxudf.h header file. At the very least, you will need the
SPH_UDF_VERSION constant to implement a proper version function. Depending on the specific plugin type, you
might or might not need to link your plugin with src/sphinxudf.c. However, all the functions implemented in
sphinxudf.c are about unpacking the PACKEDFACTORS() blob, and no plugin types are exposed to that kind of
data. So currently, you would never need to link with the C-file, just the header would be sufficient. (In fact, if you
copy over the UDF version number, then for some of the plugin types you would not even need the header file.)

76 Chapter 6. Extending

Manticore Search Documentation, Release 2.6.1

Formally, plugins are just sets of C functions that follow a certain naming parttern. You are typically required to define
just one key function that does the most important work, but you may define a bunch of other functions, too. For exam-
ple, to implement a ranker called “myrank”, you must define myrank_finalize() function that actually returns
the rank value, however, you might also define myrank_init(), myrank_update(), and myrank_deinit()
functions. Specific sets of well-known suffixes and the call arguments do differ based on the plugin type, but _init() and
_deinit() are generic, every plugin has those. Protip: for a quick reference on the known suffixes and their argument
types, refer to sphinxplugin.h, we define the call prototoypes in the very beginning of that file.

Despite having the public interface defined in ye good olde good pure C, our plugins essentially follow the object-
oriented model. Indeed, every _init() function receives a void ** userdata out-parameter. And the pointer
value that you store at (*userdata) location is then be passed as a 1st argument to all the other plugin functions.
So you can think of a plugin as class that gets instantiated every time an object of that class is needed to handle a
request: the userdata pointer would be its this pointer; the functions would be its methods, and the _init()
and _deinit() functions would be the constructor and destructor respectively.

Why this (minor) OOP-in-C complication? Well, plugins run in a multi-threaded environment, and some of them have
to be stateful. You can’t keep that state in a global variable in your plugin. So we have to pass around a userdata
parameter anyway to let you keep that state. And that naturally brings us to the OOP model. And if you’ve got a
simple, stateless plugin, the interface lets you omit the _init() and _deinit() and whatever other functions just
as well.

To summarize, here goes the simplest complete ranker plugin, in just 3 lines of C code.

// gcc -fPIC -shared -o myrank.so myrank.c
#include "sphinxudf.h"
int myrank_ver() { return SPH_UDF_VERSION; }
int myrank_finalize(void *u, int w) { return 123; }

And this is how you use it:

mysql> CREATE PLUGIN myrank TYPE 'ranker' SONAME 'myrank.dll';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT id, weight() FROM test1 WHERE MATCH('test')
-> OPTION ranker=myrank('');

+------+----------+
| id | weight() |
+------+----------+
| 1 | 123 |
| 2 | 123 |
+------+----------+
2 rows in set (0.01 sec)

6.3 Ranker plugins

Ranker plugins let you implement a custom ranker that receives all the occurrences of the keywords matched in the
document, and computes a WEIGHT() value. They can be called as follows:

SELECT id, attr1 FROM test WHERE match('hello')
OPTION ranker=myranker('option1=1');

The call workflow is as follows:

1. XXX_init() gets called once per query per index, in the very beginning. A few query-wide options are passed
to it through a SPH_RANKER_INIT structure, including the user options strings (in the example just above,
“option1=1” is that string).

6.3. Ranker plugins 77

Manticore Search Documentation, Release 2.6.1

2. XXX_update() gets called multiple times per matched document, with every matched keyword occurrence
passed as its parameter, a SPH_RANKER_HIT structure. The occurrences within each document are guaranteed
to be passed in the order of ascending hit->hit_pos values.

3. XXX_finalize() gets called once per matched document, once there are no more keyword occurrences. It
must return the WEIGHT() value. This is the only mandatory function.

4. XXX_deinit() gets called once per query, in the very end.

78 Chapter 6. Extending

CHAPTER 7

Command line tools reference

As mentioned elsewhere, Manticore is not a single program called ‘sphinx’, but a collection of 4 separate programs
which collectively form Manticore. This section covers these tools and how to use them.

7.1 indexer command reference

indexer is the first of the two principal tools as part of Manticore. Invoked from either the command line directly,
or as part of a larger script, indexer is solely responsible for gathering the data that will be searchable.

The calling syntax for indexer is as follows:

indexer [OPTIONS] [indexname1 [indexname2 [...]]]

Essentially you would list the different possible indexes (that you would later make available to search) in sphinx.
conf, so when calling indexer, as a minimum you need to be telling it what index (or indexes) you want to index.

If sphinx.conf contained details on 2 indexes, mybigindex and mysmallindex, you could do the following:

$ indexer mybigindex
$ indexer mysmallindex mybigindex

As part of the configuration file, sphinx.conf, you specify one or more indexes for your data. You might call
indexer to reindex one of them, ad-hoc, or you can tell it to process all indexes - you are not limited to calling just
one, or all at once, you can always pick some combination of the available indexes.

The exit codes are as follows:

• 0, everything went ok

• 1, there was a problem while indexing (and if –rotate was specified, it was skipped)

• 2, indexing went ok, but –rotate attempt failed

The majority of the options for indexer are given in the configuration file, however there are some options you
might need to specify on the command line as well, as they can affect how the indexing operation is performed. These
options are:

79

Manticore Search Documentation, Release 2.6.1

• --config <file> (-c <file> for short) tells indexer to use the given file as its configuration. Nor-
mally, it will look for sphinx.conf in the installation directory (e.g. /usr/local/sphinx/etc/
sphinx.conf if installed into /usr/local/sphinx), followed by the current directory you are in when
calling indexer from the shell. This is most of use in shared environments where the binary files are installed
somewhere like /usr/local/sphinx/ but you want to provide users with the ability to make their own
custom Manticore set-ups, or if you want to run multiple instances on a single server. In cases like those you
could allow them to create their own sphinx.conf files and pass them to indexer with this option. For
example:

$ indexer --config /home/myuser/sphinx.conf myindex

• --all tells indexer to update every index listed in sphinx.conf, instead of listing individual indexes.
This would be useful in small configurations, or cron-type or maintenance jobs where the entire index set will
get rebuilt each day, or week, or whatever period is best. Example usage:

$ indexer --config /home/myuser/sphinx.conf --all

• --rotate is used for rotating indexes. Unless you have the situation where you can take the search function
offline without troubling users, you will almost certainly need to keep search running whilst indexing new
documents. --rotate creates a second index, parallel to the first (in the same place, simply including .new
in the filenames). Once complete, indexer notifies searchd via sending the SIGHUP signal, and searchd
will attempt to rename the indexes (renaming the existing ones to include .old and renaming the .new to
replace them), and then start serving from the newer files. Depending on the setting of seamless_rotate, there
may be a slight delay in being able to search the newer indexes. Example usage:

$ indexer --rotate --all

• --quiet tells indexer not to output anything, unless there is an error. Again, most used for cron-type,
or other script jobs where the output is irrelevant or unnecessary, except in the event of some kind of error.
Example usage:

$ indexer --rotate --all --quiet

• --noprogress does not display progress details as they occur; instead, the final status details (such as docu-
ments indexed, speed of indexing and so on are only reported at completion of indexing. In instances where the
script is not being run on a console (or ‘tty’), this will be on by default. Example usage:

$ indexer --rotate --all --noprogress

• --buildstops <outputfile.text> <N> reviews the index source, as if it were indexing the data,
and produces a list of the terms that are being indexed. In other words, it produces a list of all the searchable
terms that are becoming part of the index. Note; it does not update the index in question, it simply processes the
data ‘as if’ it were indexing, including running queries defined with sql_query_pre or sql_query_post.
outputfile.txtwill contain the list of words, one per line, sorted by frequency with most frequent first, and
N specifies the maximum number of words that will be listed; if sufficiently large to encompass every word in the
index, only that many words will be returned. Such a dictionary list could be used for client application features
around “Did you mean. . . ” functionality, usually in conjunction with --buildfreqs, below. Example:

$ indexer myindex --buildstops word_freq.txt 1000

This would produce a document in the current directory, word_freq.txt with the 1,000 most common
words in ‘myindex’, ordered by most common first. Note that the file will pertain to the last index indexed when
specified with multiple indexes or --all (i.e. the last one listed in the configuration file)

• --buildfreqs works with --buildstops (and is ignored if --buildstops is not specified). As
--buildstops provides the list of words used within the index, --buildfreqs adds the quantity present

80 Chapter 7. Command line tools reference

Manticore Search Documentation, Release 2.6.1

in the index, which would be useful in establishing whether certain words should be considered stopwords if
they are too prevalent. It will also help with developing “Did you mean. . . ” features where you can how much
more common a given word compared to another, similar one. Example:

$ indexer myindex --buildstops word_freq.txt 1000 --buildfreqs

This would produce the word_freq.txt as above, however after each word would be the number of times it
occurred in the index in question.

• --merge <dst-index> <src-index> is used for physically merging indexes together, for example if
you have a main+delta scheme, where the main index rarely changes, but the delta index is rebuilt frequently,
and --merge would be used to combine the two. The operation moves from right to left - the contents of
src-index get examined and physically combined with the contents of dst-index and the result is left in
dst-index. In pseudo-code, it might be expressed as: dst-index += src-index An example:

$ indexer --merge main delta --rotate

In the above example, where the main is the master, rarely modified index, and delta is the less frequently
modified one, you might use the above to call indexer to combine the contents of the delta into the main
index and rotate the indexes.

• --merge-dst-range <attr> <min> <max> runs the filter range given upon merging. Specifically, as
the merge is applied to the destination index (as part of --merge, and is ignored if --merge is not specified),
indexer will also filter the documents ending up in the destination index, and only documents will pass
through the filter given will end up in the final index. This could be used for example, in an index where there
is a ‘deleted’ attribute, where 0 means ‘not deleted’. Such an index could be merged with:

$ indexer --merge main delta --merge-dst-range deleted 0 0

Any documents marked as deleted (value 1) would be removed from the newly-merged destination index. It can
be added several times to the command line, to add successive filters to the merge, all of which must be met in
order for a document to become part of the final index.

• --merge-killlists (and its shorter alias --merge-klists) changes the way kill lists are processed
when merging indexes. By default, both kill lists get discarded after a merge. That supports the most typical
main+delta merge scenario. With this option enabled, however, kill lists from both indexes get concatenated and
stored into the destination index. Note that a source (delta) index kill list will be used to suppress rows from a
destination (main) index at all times.

• --keep-attrs allows to reuse existing attributes on reindexing. Whenever the index is rebuilt, each new
document id is checked for presence in the “old” index, and if it already exists, its attributes are transferred to
the “new” index; if not found, attributes from the new index are used. If the user has updated attributes in the
index, but not in the actual source used for the index, all updates will be lost when reindexing; using –keep-attrs
enables saving the updated attribute values from the previous index. It is possible to specify a path for index
files to used instead of reference path from config:

indexer myindex --keep-attrs=/path/to/index/files

• --keep-attrs-names=<attributes list> allows to specify attributes to reuse from existing index
on reindexing. By default all attributes from existed index reused at new “index”

indexer myindex --keep-attrs=/path/to/index/files --keep-attrs-names=update,state

• --dump-rows <FILE> dumps rows fetched by SQL source(s) into the specified file, in a MySQL compatible
syntax. Resulting dumps are the exact representation of data as received by indexer and help to repeat
indexing-time issues.

7.1. indexer command reference 81

Manticore Search Documentation, Release 2.6.1

• --verbose guarantees that every row that caused problems indexing (duplicate, zero, or missing document
ID; or file field IO issues; etc) will be reported. By default, this option is off, and problem summaries may be
reported instead.

• --sighup-each is useful when you are rebuilding many big indexes, and want each one rotated into
searchd as soon as possible. With --sighup-each, indexer will send a SIGHUP signal to searchd
after successfully completing the work on each index. (The default behavior is to send a single SIGHUP after
all the indexes were built.)

• --nohup is useful when you want to check your index with indextool before actually rotating it. indexer won’t
send SIGHUP if this option is on.

• --print-queries prints out SQL queries that indexer sends to the database, along with SQL connection
and disconnection events. That is useful to diagnose and fix problems with SQL sources.

7.2 indextool command reference

indextool is one of the helper tools within the Manticore package. It is used to dump miscellaneous debug infor-
mation about the physical index. (Additional functionality such as index verification is planned in the future, hence
the indextool name rather than just indexdump.) Its general usage is:

indextool <command> [options]

Options apply to all commands:

• --config <file> (-c <file> for short) overrides the built-in config file names.

• --quiet (-q for short) keep indextool quiet - it will not output banner, etc.

The commands are as follows:

• --checkconfig just loads and verifies the config file to check if it’s valid, without syntax errors.

• --build-infixes INDEXNAME build infixes for an existing dict=keywords index (upgrades .sph, .spi in
place). You can use this option for legacy index files that already use dict=keywords, but now need to support
infix searching too; updating the index files with indextool may prove easier or faster than regenerating them
from scratch with indexer.

• --dumpheader FILENAME.sph quickly dumps the provided index header file without touching any other
index files or even the configuration file. The report provides a breakdown of all the index settings, in particular
the entire attribute and field list.

• --dumpconfig FILENAME.sph dumps the index definition from the given index header file in (almost)
compliant sphinx.conf file format.

• --dumpheader INDEXNAME dumps index header by index name with looking up the header path in the
configuration file.

• --dumpdict INDEXNAME dumps dictionary.

• --dumpdocids INDEXNAME dumps document IDs by index name. It takes the data from attribute (.spa) file
and therefore requires docinfo=extern to work.

• --dumphitlist INDEXNAME KEYWORD dumps all the hits (occurrences) of a given keyword in a given
index, with keyword specified as text.

• --dumphitlist INDEXNAME --wordid ID dumps all the hits (occurrences) of a given keyword in a
given index, with keyword specified as internal numeric ID.

82 Chapter 7. Command line tools reference

Manticore Search Documentation, Release 2.6.1

• --fold INDEXNAME OPTFILE This options is useful too see how actually tokenizer proceeds input. You
can feed indextool with text from file if specified or from stdin otherwise. The output will contain spaces instead
of separators (accordingly to your charset_table settings) and lowercased letters in words.

• --html_strip INDEXNAME filters stdin using HTML stripper settings for a given index, and prints the
filtering results to stdout. Note that the settings will be taken from sphinx.conf, and not the index header.

• --morph INDEXNAME applies morphology to the given stdin and prints the result to stdout.

• --check INDEXNAME checks the index data files for consistency errors that might be introduced either by
bugs in indexer and/or hardware faults. --check also works on RT indexes, RAM and disk chunks.

• --strip-path strips the path names from all the file names referenced from the index (stopwords, word-
forms, exceptions, etc). This is useful for checking indexes built on another machine with possibly different
path layouts.

• --optimize-rt-klists optimizes the kill list memory use in the disk chunk of a given RT index. That
is a one-off optimization intended for rather old RT indexes. In last releases this kill list optimization (purging)
should happen automatically, and there should never be a need to use this option.

• --rotate works only with --check and defines whether to check index waiting for rotation, i.e. with .new
extension. This is useful when you want to check your index before actually using it.

7.3 searchd command reference

searchd is the second of the two principle tools as part of Manticore. searchd is the part of the system which ac-
tually handles searches; it functions as a server and is responsible for receiving queries, processing them and returning
a dataset back to the different APIs for client applications.

Unlike indexer, searchd is not designed to be run either from a regular script or command-line calling, but instead
either as a daemon to be called from init.d (on Unix/Linux type systems) or to be called as a service (on Windows-type
systems), so not all of the command line options will always apply, and so will be build-dependent.

Calling searchd is simply a case of:

$ searchd [OPTIONS]

The options available to searchd on all builds are:

• --help (-h for short) lists all of the parameters that can be called in your particular build of searchd.

• --config <file> (-c <file> for short) tells searchd to use the given file as its configuration, just as
with indexer above.

• --stop is used to asynchronously stop searchd, using the details of the PID file as specified in the
sphinx.conf file, so you may also need to confirm to searchd which configuration file to use with
the --config option. NB, calling --stop will also make sure any changes applied to the indexes with
:ref:`UpdateAttributes() <update_attributes>‘ will be applied to the index files themselves. Example:

$ searchd --config /home/myuser/sphinx.conf --stop

• --stopwait is used to synchronously stop searchd. --stop essentially tells the running instance to exit
(by sending it a SIGTERM) and then immediately returns. --stopwait will also attempt to wait until the
running searchd instance actually finishes the shutdown (eg. saves all the pending attribute changes) and
exits. Example:

$ searchd --config /home/myuser/sphinx.conf --stopwait

Possible exit codes are as follows:

7.3. searchd command reference 83

Manticore Search Documentation, Release 2.6.1

– 0 on success;

– 1 if connection to running searchd daemon failed;

– 2 if daemon reported an error during shutdown;

– 3 if daemon crashed during shutdown.

• --status command is used to query running searchd instance status, using the connection details from the
(optionally) provided configuration file. It will try to connect to the running instance using the first configured
UNIX socket or TCP port. On success, it will query for a number of status and performance counter values and
print them. You can use Status() API call to access the very same counters from your application. Examples:

$ searchd --status
$ searchd --config /home/myuser/sphinx.conf --status

• --pidfile is used to explicitly force using a PID file (where the searchd process number is stored) despite
any other debugging options that say otherwise (for instance, --console). This is a debugging option.

$ searchd --console --pidfile

• --console is used to force searchd into console mode; typically it will be running as a conventional server
application, and will aim to dump information into the log files (as specified in sphinx.conf). Sometimes
though, when debugging issues in the configuration or the daemon itself, or trying to diagnose hard-to-track-
down problems, it may be easier to force it to dump information directly to the console/command line from
which it is being called. Running in console mode also means that the process will not be forked (so searches
are done in sequence) and logs will not be written to. (It should be noted that console mode is not the intended
method for running searchd.) You can invoke it as such:

$ searchd --config /home/myuser/sphinx.conf --console

• --logdebug, --logdebugv, and --logdebugvv options enable additional debug output in the daemon
log. They differ by the logging verboseness level. These are debugging options, they pollute the log a lot, and
thus they should not be normally enabled. (The normal use case for these is to enable them temporarily on
request, to assist with some particularly complicated debugging session.)

• --iostats is used in conjunction with the logging options (the query_log will need to have been activated
in sphinx.conf) to provide more detailed information on a per-query basis as to the input/output operations
carried out in the course of that query, with a slight performance hit and of course bigger logs. Further details
are available under the query log format <README> section. You might start searchd thus:

$ searchd --config /home/myuser/sphinx.conf --iostats

• --cpustats is used to provide actual CPU time report (in addition to wall time) in both query log file (for
every given query) and status report (aggregated). It depends on clock_gettime() system call and might therefore
be unavailable on certain systems. You might start searchd thus:

$ searchd --config /home/myuser/sphinx.conf --cpustats

• --port portnumber (-p for short) is used to specify the port that searchd should listen on, usually for
debugging purposes. This will usually default to 9312, but sometimes you need to run it on a different port.
Specifying it on the command line will override anything specified in the configuration file. The valid range is 0
to 65535, but ports numbered 1024 and below usually require a privileged account in order to run. An example
of usage:

$ searchd --port 9313

84 Chapter 7. Command line tools reference

Manticore Search Documentation, Release 2.6.1

• --listen (address ":" port | port | path) [":" protocol] (or -l for short)
Works as --port, but allow you to specify not only the port, but full path, as IP address and port, or Unix-
domain socket path, that searchd will listen on. Otherwords, you can specify either an IP address (or host-
name) and port number, or just a port number, or Unix socket path. If you specify port number but not the
address, searchd will listen on all network interfaces. Unix path is identified by a leading slash. As the last
param you can also specify a protocol handler (listener) to be used for connections on this socket. Supported
protocol values are ‘sphinx’ and ‘mysql41’ (MySQL protocol used since 4.1 upto at least 5.1).

• --index <index> (or -i <index> for short) forces this instance of searchd only to serve the specified
index. Like --port, above, this is usually for debugging purposes; more long-term changes would generally
be applied to the configuration file itself. Example usage:

$ searchd --index myindex

• --strip-path strips the path names from all the file names referenced from the index (stopwords, word-
forms, exceptions, etc). This is useful for picking up indexes built on another machine with possibly different
path layouts.

• --replay-flags=<OPTIONS> switch can be used to specify a list of extra binary log replay options. The
supported options are:

– accept-desc-timestamp, ignore descending transaction timestamps and replay such transactions
anyway (the default behavior is to exit with an error).

Example:

$ searchd --replay-flags=accept-desc-timestamp

There are some options for searchd that are specific to Windows platforms, concerning handling as a service, are
only be available on Windows binaries.

Note that on Windows searchd will default to --console mode, unless you install it as a service.

• --install installs searchd as a service into the Microsoft Management Console (Control Panel / Ad-
ministrative Tools / Services). Any other parameters specified on the command line, where --install is
specified will also become part of the command line on future starts of the service. For example, as part of
calling searchd, you will likely also need to specify the configuration file with --config, and you would
do that as well as specifying --install. Once called, the usual start/stop facilities will become available via
the management console, so any methods you could use for starting, stopping and restarting services would also
apply to searchd. Example:

C:\WINDOWS\system32> C:\Manticore\bin\searchd.exe --install
--config C:\Manticore\sphinx.conf

If you wanted to have the I/O stats every time you started searchd, you would specify its option on the same
line as the --install command thus:

C:\WINDOWS\system32> C:\Manticore\bin\searchd.exe --install
--config C:\Manticore\sphinx.conf --iostats

• --delete removes the service from the Microsoft Management Console and other places where services are
registered, after previously installed with --install. Note, this does not uninstall the software or delete
the indexes. It means the service will not be called from the services systems, and will not be started on
the machine’s next start. If currently running as a service, the current instance will not be terminated (until
the next reboot, or searchd is called with --stop). If the service was installed with a custom name (with
--servicename), the same name will need to be specified with --servicename when calling to uninstall.
Example:

7.3. searchd command reference 85

Manticore Search Documentation, Release 2.6.1

C:\WINDOWS\system32> C:\Manticore\bin\searchd.exe --delete

• --servicename <name> applies the given name to searchd when installing or deleting the service, as
would appear in the Management Console; this will default to searchd, but if being deployed on servers where
multiple administrators may log into the system, or a system with multiple searchd instances, a more descrip-
tive name may be applicable. Note that unless combined with --install or --delete, this option does not
do anything. Example:

C:\WINDOWS\system32> C:\Manticore\bin\searchd.exe --install
--config C:\Manticore\sphinx.conf --servicename ManticoreSearch

• --ntservice is the option that is passed by the Management Console to searchd to invoke it as a service
on Windows platforms. It would not normally be necessary to call this directly; this would normally be called
by Windows when the service would be started, although if you wanted to call this as a regular service from the
command-line (as the complement to --console) you could do so in theory.

• --safetrace forces searchd to only use system backtrace() call in crash reports. In certain (rare) scenarios,
this might be a “safer” way to get that report. This is a debugging option.

• --nodetach switch (Linux only) tells searchd not to detach into background. This will also cause log entry
to be printed out to console. Query processing operates as usual. This is a debugging option.

Last but not least, as every other daemon, searchd supports a number of signals.

• SIGTERM

• Initiates a clean shutdown. New queries will not be handled; but queries that are already started will not be
forcibly interrupted.

• SIGHUP

• Initiates index rotation. Depending on the value of seamless_rotate setting, new queries might be shortly stalled;
clients will receive temporary errors.

• SIGUSR1

• Forces reopen of searchd log and query log files, letting you implement log file rotation.

7.4 spelldump command reference

spelldump is one of the helper tools within the Manticore package.

It is used to extract the contents of a dictionary file that uses ispell or MySpell format, which can help build word
lists for wordforms - all of the possible forms are pre-built for you.

Its general usage is:

spelldump [options] <dictionary> <affix> [result] [locale-name]

The two main parameters are the dictionary’s main file and its affix file; usually these are named as
[language-prefix].dict and [language-prefix].aff and will be available with most common Linux
distributions, as well as various places online.

[result] specifies where the dictionary data should be output to, and [locale-name] additionally specifies the
locale details you wish to use.

There is an additional option, -c [file], which specifies a file for case conversion details.

Examples of its usage are:

86 Chapter 7. Command line tools reference

Manticore Search Documentation, Release 2.6.1

spelldump en.dict en.aff
spelldump ru.dict ru.aff ru.txt ru_RU.CP1251
spelldump ru.dict ru.aff ru.txt .1251

The results file will contain a list of all the words in the dictionary in alphabetical order, output in the format of a
wordforms file, which you can use to customize for your specific circumstances. An example of the result file:

zone > zone
zoned > zoned
zoning > zoning

7.5 wordbreaker command reference

wordbreaker is one of the helper tools within the Manticore package. It is used to split compound words, as usual
in URLs, into its component words. For example, this tool can split “lordoftherings” into its four component words, or
“http://manofsteel.warnerbros.com” into “man of steel warner bros”. This helps searching, without requiring prefixes
or infixes: searching for “sphinx” wouldn’t match “sphinxsearch” but if you break the compound word and index the
separate components, you’ll get a match without the costs of prefix and infix larger index files.

Examples of its usage are:

echo manofsteel | bin/wordbreaker -dict dict.txt split
man of steel

The input stream will be separated in words using the -dict dictionary file. In no dictionary specified, wordbreaker
looks in the working folder for a wordbreaker-dict.txt file. (The dictionary should match the language of the com-
pound word.) The split command breaks words from the standard input, and outputs the result in the standard
output. There are also test and bench commands that let you test the splitting quality and benchmark the splitting
functionality.

Wordbreaker Wordbreaker needs a dictionary to recognize individual substrings within a string. To differentiate be-
tween different guesses, it uses the relative frequency of each word in the dictionary: higher frequency means higher
split probability. You can generate such a file using the indexer tool, as in

indexer --buildstops dict.txt 100000 --buildfreqs myindex -c /path/to/sphinx.conf

which will write the 100,000 most frequent words, along with their counts, from myindex into dict.txt. The output file
is a text file, so you can edit it by hand, if need be, to add or remove words.

7.5. wordbreaker command reference 87

http://manofsteel.warnerbros.com

Manticore Search Documentation, Release 2.6.1

88 Chapter 7. Command line tools reference

CHAPTER 8

SphinxQL reference

SphinxQL is our SQL dialect that exposes all of the search daemon functionality using a standard SQL syntax with
a few Manticore-specific extensions. Everything available via the SphinxAPI is also available via SphinxQL but not
vice versa; for instance, writes into RT indexes are only available via SphinxQL. This chapter documents supported
SphinxQL statements syntax.

8.1 ALTER syntax

ALTER TABLE index {ADD|DROP} COLUMN column_name [
→˓{INTEGER|INT|BIGINT|FLOAT|BOOL|MULTI|MULTI64|JSON|STRING}]

It supports adding one attribute at a time for both plain and RT indexes. The int, bigint, float, bool, multi-valued,
multi-valued 64bit, json and string attribute types are supported. You can add json and string attributes, but you cannot
modify their values.

Implementation details. The querying of an index is impossible (because of a write lock) while adding a column. This
may change in the future. The newly created attribute values are set to 0. ALTER will not work for distributed indexes
and indexes without any attributes. DROP COLUMN will fail if an index has only one attribute.

ALTER RTINDEX index RECONFIGURE

ALTER can also reconfigure an existing RT index, so that new tokenization, morphology, and other text processing
settings from sphinx.conf take effect on the newly INSERT-ed rows, while retaining the existing rows as they were.
Internally, it forcibly saves the current RAM chunk as a new disk chunk, and adjusts the index header, so that the new
rows are tokenized using the new rules. Note that as the queries are currently parsed separately for every disk chunk,
this might result in warnings regarding the keyword sets mismatch.

mysql> desc plain;
+------------+-----------+
| Field | Type |
+------------+-----------+
| id | bigint |

(continues on next page)

89

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

text	field
group_id	uint
date_added	timestamp
+------------+-----------+
4 rows in set (0.01 sec)

mysql> alter table plain add column test integer;
Query OK, 0 rows affected (0.04 sec)

mysql> desc plain;
+------------+-----------+
| Field | Type |
+------------+-----------+
id	bigint
text	field
group_id	uint
date_added	timestamp
test	uint
+------------+-----------+
5 rows in set (0.00 sec)

mysql> alter table plain drop column group_id;
Query OK, 0 rows affected (0.01 sec)

mysql> desc plain;
+------------+-----------+
| Field | Type |
+------------+-----------+
id	bigint
text	field
date_added	timestamp
test	uint
+------------+-----------+
4 rows in set (0.00 sec)

8.2 ATTACH INDEX syntax

ATTACH INDEX diskindex TO RTINDEX rtindex

ATTACH INDEX statement lets you move data from a regular disk index to a RT index.

After a successful ATTACH, the data originally stored in the source disk index becomes a part of the target RT index,
and the source disk index becomes unavailable (until the next rebuild). ATTACH does not result in any index data
changes. Basically, it just renames the files (making the source index a new disk chunk of the target RT index), and
updates the metadata. So it is a generally quick operation which might (frequently) complete as fast as under a second.

Note that when an index is attached to an empty RT index, the fields, attributes, and text processing settings (tokenizer,
wordforms, etc) from the source index are copied over and take effect. The respective parts of the RT index definition
from the configuration file will be ignored.

ATTACH INDEX comes with a number of restrictions. Most notably, the target RT index is currently required to
be empty, making ATTACH INDEX a one-time conversion operation only. Those restrictions may be lifted in future
releases, as we add the needed functionality to the RT indexes. The complete list is as follows.

• Target RT index needs to be empty. (See TRUNCATE RTINDEX syntax)

90 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

• Source disk index needs to have index_sp=0, boundary_step=0, stopword_step=1.

• Source disk index needs to have an empty index_zones setting.

mysql> DESC rt;
+-----------+---------+
| Field | Type |
+-----------+---------+
id	integer
testfield	field
testattr	uint
+-----------+---------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM rt;
Empty set (0.00 sec)

mysql> SELECT * FROM disk WHERE MATCH('test');
+------+--------+----------+------------+
| id | weight | group_id | date_added |
+------+--------+----------+------------+
1	1304	1	1313643256
2	1304	1	1313643256
3	1304	1	1313643256
4	1304	1	1313643256
+------+--------+----------+------------+
4 rows in set (0.00 sec)

mysql> ATTACH INDEX disk TO RTINDEX rt;
Query OK, 0 rows affected (0.00 sec)

mysql> DESC rt;
+------------+-----------+
| Field | Type |
+------------+-----------+
id	integer
title	field
content	field
group_id	uint
date_added	timestamp
+------------+-----------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM rt WHERE MATCH('test');
+------+--------+----------+------------+
| id | weight | group_id | date_added |
+------+--------+----------+------------+
1	1304	1	1313643256
2	1304	1	1313643256
3	1304	1	1313643256
4	1304	1	1313643256
+------+--------+----------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM disk WHERE MATCH('test');
ERROR 1064 (42000): no enabled local indexes to search

8.2. ATTACH INDEX syntax 91

Manticore Search Documentation, Release 2.6.1

8.3 BEGIN, COMMIT, and ROLLBACK syntax

START TRANSACTION | BEGIN
COMMIT
ROLLBACK
SET AUTOCOMMIT = {0 | 1}

BEGIN statement (or its START TRANSACTION alias) forcibly commits pending transaction, if any, and begins
a new one. COMMIT statement commits the current transaction, making all its changes permanent. ROLLBACK
statement rolls back the current transaction, canceling all its changes. SET AUTOCOMMIT controls the autocommit
mode in the active session.

AUTOCOMMIT is set to 1 by default, meaning that every statement that performs any changes on any index is
implicitly wrapped in BEGIN and COMMIT.

Transactions are limited to a single RT index, and also limited in size. They are atomic, consistent, overly isolated,
and durable. Overly isolated means that the changes are not only invisible to the concurrent transactions but even to
the current session itself.

8.4 BEGIN syntax

START TRANSACTION | BEGIN

BEGIN syntax is discussed in detail in BEGIN, COMMIT, and ROLLBACK syntax.

8.5 CALL KEYWORDS syntax

CALL KEYWORDS(text, index [, options])

CALL KEYWORDS statement splits text into particular keywords. It returns tokenized and normalized forms of the
keywords, and, optionally, keyword statistics. It also returns the position of each keyword in the query and all forms
of tokenized keywords in the case that lemmatizers were used.

text is the text to break down to keywords. index is the name of the index from which to take the text processing
settings. options, is an optional boolean parameter that specifies whether to return document and hit occurrence
statistics. options can also accept parameters for configuring folding depending on tokenization settings:

• stats - show statistics of keywords, default is 0

• fold_wildcards - fold wildcards, default is 1

• fold_lemmas - fold morphological lemmas, default is 0

• fold_blended - fold blended words, default is 0

• expansion_limit - override expansion_limit defined in configuration, default is 0 (use value from config-
uration)

call keywords(
'que*',
'myindex',
1 as fold_wildcards,
1 as fold_lemmas,
1 as fold_blended,

(continues on next page)

92 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

1 as expansion_limit,
1 as stats);

Default values to match previous CALL KEYWORDS output are:

call keywords(
'que*',
'myindex',
1 as fold_wildcards,
0 as fold_lemmas,
0 as fold_blended,
0 as expansion_limit,
0 as stats);

8.6 CALL PQ syntax

CALL PQ(data, index[, opt_value AS opt_name[, ...]])

CALL PQ statement performs a prospective search. It returns stored queries from a percolate``index that
match documents from provided``data. For more information, see Percolate Query section.

data can be a document in plain text, a JSON object containing a document or a list of documents in one of the two
formats. The JSON object can contain pairs of text field names and values as well as attribute names and values.

Example:

CALL PQ ('index_name', 'single document', 0 as docs_json);
CALL PQ ('index_name', ('first document', 'second document'), 0 as docs_json);
CALL PQ ('index_name', '{"title":"single document","content":"Add your content here",
→˓"category":10,"timestamp":1513725448}');
CALL PQ ('index_name', (

'{"title":"first document","content":"Add your content here
→˓","category":10,"timestamp":1513725448}',

'{"title":"second document","content":"Add more content here
→˓","category":20,"timestamp":1513758240}'

)
);

A number of options can be set:

• docs_json - 1 (default enabled), specify if the data provides document(s) as raw string or encapsulated as
JSON object

• docs - 0 (default disabled), provide per query documents matched at result set

• verbose - 0 (default disabled), provide extended info in SHOW META

• query - 0 (default disabled), if true returns all information of matched stored query, otherwise it returns just the
stored query ID

Example:

MySQL [(none)]> CALL PQ('pq','catch me if you can',0 AS docs_json,1 AS query);
+------+----------+------+---------+
| UID | Query | Tags | Filters |
+------+----------+------+---------+

(continues on next page)

8.6. CALL PQ syntax 93

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| 6 | catch me | | |
+------+----------+------+---------+
1 row in set (0.00 sec)

CALL PQ can be followed by a SHOW META statement which provides additional meta-information about the exe-
cuted prospective search.

8.7 CALL QSUGGEST syntax

CALL QSUGGEST(word, index [,options])

CALL QSUGGEST statement enumerates for a giving word all suggestions from the dictionary. This statement works
only on indexes with infixing enabled and dict=keywords. It returns the suggested keywords, Levenshtein distance
between the suggested and original keyword and the docs statistic of the suggested keyword. If the first parameter
is a bag of words, the function will return suggestions only for the last word, ignoring the rest. Several options are
supported for customization:

• limit - returned N top matches, default is 5

• max_edits - keep only dictionary words which Levenshtein distance is less or equal, default is 4

• result_stats - provide Levenshtein distance and document count of the found words, default is 1 (enabled)

• delta_len - keep only dictionary words whose length difference is less, default is 3

• max_matches - number of matches to keep, default is 25

• reject - defaults to 4; rejected words are matches that are not better than those already in the match queue.
They are put in a rejected queue that gets reset in case one actually can go in the match queue. This parameter
defines the size of the rejected queue (as reject*max(max_matched,limit)). If the rejected queue is filled, the
engine stops looking for potential matches.

• result_line - alternate mode to display the data by returning all suggests, distances and docs each per one
row, default is 0

• non_char - do not skip dictionary words with non alphabet symbols, default is 0 (skip such words)

mysql> CALL QSUGGEST('automaticlly ','forum', 5 as limit, 4 as max_edits,1 as result_
→˓stats,3 as delta_len,0 as result_line,25 as max_matches,4 as reject);
+---------------+----------+------+
| suggest | distance | docs |
+---------------+----------+------+
automatically	1	282
automaticly	1	6
automaticaly	1	3
automagically	2	14
automtically	2	1
+---------------+----------+------+
5 rows in set (0.00 sec)

8.8 CALL SNIPPETS syntax

CALL SNIPPETS(data, index, query[, opt_value AS opt_name[, ...]])

94 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

CALL SNIPPETS statement builds a snippet from provided data and query, using specified index settings.

data is the source data to extract a snippet from. It could be a single string, or the list of the strings enclosed in curly
brackets. index is the name of the index from which to take the text processing settings. query is the full-text query
to build snippets for. Additional options are documented in BuildExcerpts. Usage example:

CALL SNIPPETS('this is my document text', 'test1', 'hello world',
5 AS around, 200 AS limit);

CALL SNIPPETS(('this is my document text','this is my another text'), 'test1', 'hello
→˓world',

5 AS around, 200 AS limit);
CALL SNIPPETS(('data/doc1.txt','data/doc2.txt','/home/sphinx/doc3.txt'), 'test1',
→˓'hello world',

5 AS around, 200 AS limit, 1 AS load_files);

8.9 CALL SUGGEST syntax

CALL SUGGEST(word, index [,options])

CALL SUGGEST statement works the same as CALL QUSUGGEST, except that if a bag of words is present, the
statement will return suggestions only for the first word, ignoring the rest. If the first paramenter is a word, the
functionality of CALL SUGGEST and CALL QSUGGEST is the same.

8.10 Comment syntax

SphinxQL supports C-style comment syntax. Everything from an opening /* sequence to a closing */ sequence is
ignored. Comments can span multiple lines, can not nest, and should not get logged. MySQL specific /*! ...

*/ comments are also currently ignored. (As the comments support was rather added for better compatibility with
mysqldump produced dumps, rather than improving general query interoperability between Manticore and MySQL.)

SELECT /*! SQL_CALC_FOUND_ROWS */ col1 FROM table1 WHERE ...

8.11 CREATE FUNCTION syntax

CREATE FUNCTION udf_name
RETURNS {INT | INTEGER | BIGINT | FLOAT | STRING}
SONAME 'udf_lib_file'

CREATE FUNCTION statement installs a user-defined function (UDF) with the given name and type from the given
library file. The library file must reside in a trusted plugin_dir directory. On success, the function is available for use
in all subsequent queries that the server receives. Example:

mysql> CREATE FUNCTION avgmva RETURNS INTEGER SONAME 'udfexample.dll';
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT *, AVGMVA(tag) AS q from test1;
+------+--------+---------+-----------+
| id | weight | tag | q |
+------+--------+---------+-----------+
| 1 | 1 | 1,3,5,7 | 4.000000 |

(continues on next page)

8.9. CALL SUGGEST syntax 95

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

2	1	2,4,6	4.000000
3	1	15	15.000000
4	1	7,40	23.500000
+------+--------+---------+-----------+

8.12 CREATE PLUGIN syntax

CREATE PLUGIN plugin_name TYPE 'plugin_type' SONAME 'plugin_library'

Loads the given library (if it is not loaded yet) and loads the specified plugin from it. The known plugin types are:

• ranker

• index_token_filter

• query_token_filter

Refer to Plugins for more information regarding writing the plugins.

mysql> CREATE PLUGIN myranker TYPE 'ranker' SONAME 'myplugins.so';
Query OK, 0 rows affected (0.00 sec)

8.13 DELETE syntax

DELETE FROM index WHERE where_condition

DELETE statement is only supported for RT indexes and for distributed which contains only RT indexes as agents It
deletes existing rows (documents) from an existing index based on ID.

index is the name of RT index from which the row should be deleted.

where_condition has the same syntax as in the SELECT statement (see SELECT syntax for details).

mysql> select * from rt;
+------+------+-------------+------+
| id | gid | mva1 | mva2 |
+------+------+-------------+------+
100	1000	100,201	100
101	1001	101,202	101
102	1002	102,203	102
103	1003	103,204	103
104	1004	104,204,205	104
105	1005	105,206	105
106	1006	106,207	106
107	1007	107,208	107
+------+------+-------------+------+
8 rows in set (0.00 sec)

mysql> delete from rt where match ('dumy') and mva1>206;
Query OK, 2 rows affected (0.00 sec)

mysql> select * from rt;
+------+------+-------------+------+

(continues on next page)

96 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| id | gid | mva1 | mva2 |
+------+------+-------------+------+
100	1000	100,201	100
101	1001	101,202	101
102	1002	102,203	102
103	1003	103,204	103
104	1004	104,204,205	104
105	1005	105,206	105
+------+------+-------------+------+
6 rows in set (0.00 sec)

mysql> delete from rt where id in (100,104,105);
Query OK, 3 rows affected (0.01 sec)

mysql> select * from rt;
+------+------+---------+------+
| id | gid | mva1 | mva2 |
+------+------+---------+------+
101	1001	101,202	101
102	1002	102,203	102
103	1003	103,204	103
+------+------+---------+------+
3 rows in set (0.00 sec)

mysql> delete from rt where mva1 in (102,204);
Query OK, 2 rows affected (0.01 sec)

mysql> select * from rt;
+------+------+---------+------+
| id | gid | mva1 | mva2 |
+------+------+---------+------+
| 101 | 1001 | 101,202 | 101 |
+------+------+---------+------+
1 row in set (0.00 sec)

8.14 DESCRIBE syntax

{DESC | DESCRIBE} index [LIKE pattern]

DESCRIBE statement lists index columns and their associated types. Columns are document ID, full-text fields, and
attributes. The order matches that in which fields and attributes are expected by INSERT and REPLACE statements.
Column types are field, integer, timestamp, ordinal, bool, float, bigint, string, and mva. ID
column will be typed as bigint. Example:

mysql> DESC rt;
+---------+---------+
| Field | Type |
+---------+---------+
id	bigint
title	field
content	field
gid	integer
+---------+---------+
4 rows in set (0.00 sec)

8.14. DESCRIBE syntax 97

Manticore Search Documentation, Release 2.6.1

An optional LIKE clause is supported. Refer to SHOW META syntax for its syntax details.

8.15 DROP FUNCTION syntax

DROP FUNCTION udf_name

DROP FUNCTION statement deinstalls a user-defined function (UDF) with the given name. On success, the function
is no longer available for use in subsequent queries. Pending concurrent queries will not be affected and the library
unload, if necessary, will be postponed until those queries complete. Example:

mysql> DROP FUNCTION avgmva;
Query OK, 0 rows affected (0.00 sec)

8.16 DROP PLUGIN syntax

DROP PLUGIN plugin_name TYPE 'plugin_type'

Markes the specified plugin for unloading. The unloading is not immediate, because the concurrent queries might be
using it. However, after a DROP new queries will not be able to use it. Then, once all the currently executing queries
using it are completed, the plugin will be unloaded. Once all the plugins from the given library are unloaded, the
library is also automatically unloaded.

mysql> DROP PLUGIN myranker TYPE 'ranker';
Query OK, 0 rows affected (0.00 sec)

8.17 FLUSH ATTRIBUTES syntax

FLUSH ATTRIBUTES

Flushes all in-memory attribute updates in all the active disk indexes to disk. Returns a tag that identifies the result
on-disk state (basically, a number of actual disk attribute saves performed since the daemon startup).

mysql> UPDATE testindex SET channel_id=1107025 WHERE id=1;
Query OK, 1 row affected (0.04 sec)

mysql> FLUSH ATTRIBUTES;
+------+
| tag |
+------+
| 1 |
+------+
1 row in set (0.19 sec)

8.18 FLUSH HOSTNAMES syntax

FLUSH HOSTNAMES

98 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

Renew IPs associates to agent host names. To always query the DNS for getting the host name IP, see hostname_lookup
directive.

mysql> FLUSH HOSTNAMES;
Query OK, 5 rows affected (0.01 sec)

8.19 FLUSH LOGS syntax

FLUSH LOGS

Works same as system USR1 signal. Initiate reopen of searchd log and query log files, letting you implement log file
rotation. Command is non-blocking (i.e., returns immediately).

mysql> FLUSH LOGS;
Query OK, 0 rows affected (0.01 sec)

8.20 FLUSH RAMCHUNK syntax

FLUSH RAMCHUNK rtindex

FLUSH RAMCHUNK forcibly creates a new disk chunk in a RT index.

Normally, RT index would flush and convert the contents of the RAM chunk into a new disk chunk automatically,
once the RAM chunk reaches the maximum allowed rt_mem_limit size. However, for debugging and testing it might
be useful to forcibly create a new disk chunk, and FLUSH RAMCHUNK statement does exactly that.

Note that using FLUSH RAMCHUNK increases RT index fragmentation. Most likely, you want to use FLUSH
RTINDEX instead. We suggest that you abstain from using just this statement unless you’re absolutely sure what
you’re doing. As the right way is to issue FLUSH RAMCHUNK with following OPTIMIZE command. Such combo
allows to keep RT index fragmentation on minimum.

mysql> FLUSH RAMCHUNK rt;
Query OK, 0 rows affected (0.05 sec)

8.21 FLUSH RTINDEX syntax

FLUSH RTINDEX rtindex

FLUSH RTINDEX forcibly flushes RT index RAM chunk contents to disk.

Backing up a RT index is as simple as copying over its data files, followed by the binary log. However, recovering
from that backup means that all the transactions in the log since the last successful RAM chunk write would need to
be replayed. Those writes normally happen either on a clean shutdown, or periodically with a (big enough!) interval
between writes specified in rt_flush_period directive. So such a backup made at an arbitrary point in time just might
end up with way too much binary log data to replay.

FLUSH RTINDEX forcibly writes the RAM chunk contents to disk, and also causes the subsequent cleanup of (now-
redundant) binary log files. Thus, recovering from a backup made just after FLUSH RTINDEX should be almost
instant.

8.19. FLUSH LOGS syntax 99

Manticore Search Documentation, Release 2.6.1

mysql> FLUSH RTINDEX rt;
Query OK, 0 rows affected (0.05 sec)

8.22 INSERT and REPLACE syntax

{INSERT | REPLACE} INTO index [(column, ...)]
VALUES (value, ...)
[, (...)]

INSERT statement is only supported for RT indexes. It inserts new rows (documents) into an existing index, with the
provided column values.

ID column must be present in all cases. Rows with duplicate IDs will not be overwritten by INSERT; use REPLACE
to do that. REPLACE works exactly like INSERT, except that if an old row has the same ID as a new row, the old row
is deleted before the new row is inserted.

index is the name of RT index into which the new row(s) should be inserted. The optional column names list lets
you only explicitly specify values for some of the columns present in the index. All the other columns will be filled
with their default values (0 for scalar types, empty string for text types).

Expressions are not currently supported in INSERT and values should be explicitly specified.

Multiple rows can be inserted using a single INSERT statement by providing several comma-separated, parentheses-
enclosed lists of rows values.

8.23 List of SphinxQL reserved keywords

A complete alphabetical list of keywords that are currently reserved in SphinxQL syntax (and therefore can not be
used as identifiers).

AND, AS, BY, DIV, FACET, FALSE, FROM, ID, IN, INDEXES, IS, LIMIT,
LOGS, MOD, NOT, NULL, OR, ORDER, RELOAD, SELECT, SYSFILTERS, TRUE

8.24 Multi-statement queries

SphinxQL supports multi-statement queries, or batches. Possible inter-statement optimizations described in Multi-
queries do apply to SphinxQL just as well. The batched queries should be separated by a semicolon. Your MySQL
client library needs to support MySQL multi-query mechanism and multiple result set. For instance, mysqli interface
in PHP and DBI/DBD libraries in Perl are known to work.

Here’s a PHP sample showing how to utilize mysqli interface with Manticore.

<?php

$link = mysqli_connect ("127.0.0.1", "root", "", "", 9306);
if (mysqli_connect_errno())

die ("connect failed: " . mysqli_connect_error());

$batch = "SELECT * FROM test1 ORDER BY group_id ASC;";
$batch .= "SELECT * FROM test1 ORDER BY group_id DESC";

(continues on next page)

100 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

if (!mysqli_multi_query ($link, $batch))
die ("query failed");

do
{

// fetch and print result set
if ($result = mysqli_store_result($link))
{

while ($row = mysqli_fetch_row($result))
printf ("id=%s\n", $row[0]);

mysqli_free_result($result);
}

// print divider
if (mysqli_more_results($link))

printf ("------\n");

} while (mysqli_next_result($link));

Its output with the sample test1 index included with Manticore is as follows.

$ php test_multi.php
id=1
id=2
id=3
id=4

id=3
id=4
id=1
id=2

The following statements can currently be used in a batch: SELECT, SHOW WARNINGS, SHOW STATUS, and
SHOW META. Arbitrary sequence of these statements are allowed. The results sets returned should match those that
would be returned if the batched queries were sent one by one.

8.25 OPTIMIZE INDEX syntax

OPTIMIZE INDEX index_name

OPTIMIZE statement enqueues a RT index for optimization in a background thread.

Over time, RT indexes can grow fragmented into many disk chunks and/or tainted with deleted, but unpurged data,
impacting search performance. When that happens, they can be optimized. Basically, the optimization pass merges
together disk chunks pairs, purging off documents suppressed by K-list as it goes.

That is a lengthy and IO intensive process, so to limit the impact, all the actual merge work is executed serially in a
special background thread, and the OPTIMIZE statement simply adds a job to its queue. Currently, there is no way
to check the index or queue status (that might be added in the future to the SHOW INDEX STATUS and SHOW
STATUS statements respectively). The optimization thread can be IO-throttled, you can control the maximum number
of IOs per second and the maximum IO size with rt_merge_iops and rt_merge_maxiosize directives respectively. The
optimization jobs queue is lost on daemon crash.

The RT index being optimized stays online and available for both searching and updates at (almost) all times during
the optimization. It gets locked (very) briefly every time that a pair of disk chunks is merged successfully, to rename

8.25. OPTIMIZE INDEX syntax 101

Manticore Search Documentation, Release 2.6.1

the old and the new files, and update the index header.

At the moment, OPTIMIZE needs to be issued manually, the indexes will not be optimized automatically. That might
change in the future releases.

mysql> OPTIMIZE INDEX rt;
Query OK, 0 rows affected (0.00 sec)

8.26 RELOAD INDEX syntax

RELOAD INDEX idx [FROM '/path/to/index_files']

RELOAD INDEX allows you to rotate indexes using SphinxQL.

It has two modes of operation. First one (without specifying a path) makes Manticore daemon check for new index
files in directory specified in path. New index files must have a idx.new.sp? names.

And if you additionally specify a path, daemon will look for index files in specified directory, move them to index
path, rename from index_files.sp? to idx.new.sp? and rotate them.

mysql> RELOAD INDEX plain_index;
mysql> RELOAD INDEX plain_index FROM '/home/mighty/new_index_files';

8.27 RELOAD INDEXES syntax

RELOAD INDEXES

Works same as system HUP signal. Initiates index rotation. Depending on the value of seamless_rotate setting,
new queries might be shortly stalled; clients will receive temporary errors. Command is non-blocking (i.e., returns
immediately).

mysql> RELOAD INDEXES;
Query OK, 0 rows affected (0.01 sec)

8.28 RELOAD PLUGINS syntax

RELOAD PLUGINS FROM SONAME 'plugin_library'

Reloads all plugins (UDFs, rankers, etc) from a given library. Reload is, in a sense, transactional: a successful reload
guarantees that a) all the plugins were successfully updated with their new versions; b) the update was atomic, all the
plugins were replaced at once. Atomicity means that queries using multiple functions from a reloaded library will
never mix the old and new versions. The set of plugins is guaranteed to always be consistent during the RELOAD, it
will be either all old, or all new.

Reload also is seamless, meaning that some version of a reloaded plugin will be available to concurrent queries at all
times, and there will be no temporary disruptions. Note how this improves on using a pair of DROP and CREATE
statements for reloading: with those, there is a tiny window between the DROP and the subsequent CREATE, during
which the queries technically refer to an unknown plugin and will thus fail.

In case of any failure RELOAD PLUGINS does absolutely nothing, keeps the old plugins, and reports an error.

102 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

On Windows, either overwriting or deleting a DLL library currently in use seems to be an issue. However, you can
still rename it, then put a new version under the old name, and RELOAD will then work. After a succesful reload you
will also be able to delete the renamed old library, too.

mysql> RELOAD PLUGINS FROM SONAME 'udfexample.dll';
Query OK, 0 rows affected (0.00 sec)

8.29 REPLACE syntax

{INSERT | REPLACE} INTO index [(column, ...)]
VALUES (value, ...)
[, (...)]

REPLACE syntax is identical to INSERT syntax and is described in INSERT and REPLACE syntax.

8.30 ROLLBACK syntax

ROLLBACK

ROLLBACK syntax is discussed in detail in BEGIN, COMMIT, and ROLLBACK syntax.

8.31 SELECT syntax

SELECT
select_expr [, select_expr ...]
FROM index [, index2 ...]
[WHERE where_condition]
[GROUP [N] BY {col_name | expr_alias} [, {col_name | expr_alias}]]
[WITHIN GROUP ORDER BY {col_name | expr_alias} {ASC | DESC}]
[HAVING having_condition]
[ORDER BY {col_name | expr_alias} {ASC | DESC} [, ...]]
[LIMIT [offset,] row_count]
[OPTION opt_name = opt_value [, ...]]
[FACET facet_options[FACET facet_options][...]]

SELECT statement’s syntax is based upon regular SQL but adds several Manticore-specific extensions and has a few
omissions (such as (currently) missing support for JOINs). Specifically,

8.31.1 Column list

Column list clause. Column names, arbitrary expressions, and star (‘*’) are all allowed (ie. SELECT id,
group_id*123+456 AS expr1 FROM test1 will work). Unlike in regular SQL, all computed expressions
must be aliased with a valid identifier. AS is optional.

8.31.2 EXIST()

EXIST (“attr-name”, default-value) replaces non-existent columns with default values. It returns either a value of
an attribute specified by ‘attr-name’, or ‘default-value’ if that attribute does not exist. It does not support STRING or

8.29. REPLACE syntax 103

Manticore Search Documentation, Release 2.6.1

MVA attributes. This function is handy when you are searching through several indexes with different schemas.

SELECT *, EXIST('gid', 6) as cnd FROM i1, i2 WHERE cnd>5

8.31.3 SNIPPET()

This is a wrapper around the snippets functionality, similar to what is available via CALL SNIPPETS. The first two
arguments are: the text to highlight, and a query. It’s possible to pass options to function. The intended use is as
follows:

SELECT id, SNIPPET(myUdf(id), 'my.query', 'limit=100')
FROM myIndex WHERE MATCH('my.query')

where myUdf() would be a UDF that fetches a document by its ID from some external storage. This enables ap-
plications to fetch the entire result set directly from Manticore in one query, without having to separately fetch the
documents in the application and then send them back to Manticore for highlighting.

SNIPPET() is a so-called “post limit” function, meaning that computing snippets is postponed not just until the en-
tire final result set is ready, but even after the LIMIT clause is applied. For example, with a LIMIT 20,10 clause,
SNIPPET() will be called at most 10 times.

Table functions is a mechanism of post-query result set processing. Table functions take an arbitrary result set as
their input, and return a new, processed set as their output. The first argument should be the input result set, but a
table function can optionally take and handle more arguments. Table functions can completely change the result set,
including the schema. For now, only built in table functions are supported. UDFs are planned when the internal call
interface is stabilized. Table functions work for both outer SELECT and nested SELECT.

8.31.4 REMOVE_REPEATS()

REMOVE_REPEATS (result_set, column, offset, limit) - removes repeated adjusted rows with the same ‘column’
value.

SELECT REMOVE_REPEATS((SELECT * FROM dist1), gid, 0, 10)

8.31.5 FROM

FROM clause should contain the list of indexes to search through. Unlike in regular SQL, comma means enumeration
of full-text indexes as in Query() API call rather than JOIN. Index name should be according to the rules of a C
identifier.

8.31.6 WHERE

This clause will map both to fulltext query and filters. Comparison operators (=, !=, <, >, <=, >=), IN, AND, OR,
NOT, and BETWEEN are all supported and map directly to filters. MATCH(‘query’) is supported and maps to fulltext
query. Query will be interpreted according to full-text query language rules. There must be at most one MATCH()
in the clause. {col_name | expr_alias} [NOT] IN @uservar condition syntax is supported. (Refer to
SET syntax for a description of global user variables.)

104 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

8.31.7 GROUP BY

Supports grouping by multiple columns or computed expressions:

SELECT *, group_id*1000+article_type AS gkey FROM example GROUP BY gkey
SELECT id FROM products GROUP BY region, price

Implicit grouping supported when using aggregate functions without specifiying a GROUP BY clause. Consider these
two queries:

SELECT MAX(id), MIN(id), COUNT(*) FROM books
SELECT MAX(id), MIN(id), COUNT(*), 1 AS grp FROM books GROUP BY grp

Aggregate functions (AVG(), MIN(), MAX(), SUM()) in column list clause are supported. Arguments to aggregate
functions can be either plain attributes or arbitrary expressions. COUNT(*), COUNT(DISTINCT attr) are supported.
Currently there can be at most one COUNT(DISTINCT) per query and an argument needs to be an attribute. Both
current restrictions on COUNT(DISTINCT) might be lifted in the future. A special GROUPBY() function is also
supported. It returns the GROUP BY key. That is particularly useful when grouping by an MVA value, in order to
pick the specific value that was used to create the current group.

SELECT *, AVG(price) AS avgprice, COUNT(DISTINCT storeid), GROUPBY()
FROM products
WHERE MATCH('ipod')
GROUP BY vendorid

GROUP BY on a string attribute is supported, with respect for current collation (see Collations).

You can query Manticore to return (no more than) N top matches for each group accordingly to WITHIN GROUP
ORDER BY.

SELECT id FROM products GROUP 3 BY category

You can sort the result set by (an alias of) the aggregate value.

SELECT group_id, MAX(id) AS max_id
FROM my_index WHERE MATCH('the')
GROUP BY group_id ORDER BY max_id DESC

8.31.8 GROUP_CONCAT()

When you group by an attribute, the result set only shows attributes from a single document representing the whole
group. GROUP_CONCAT() produces a comma-separated list of the attribute values of all documents in the group.

SELECT id, GROUP_CONCAT(price) as pricesList, GROUPBY() AS name FROM shops GROUP BY
→˓shopName;

8.31.9 ZONESPANLIST()

ZONESPANLIST() function returns pairs of matched zone spans. Each pair contains the matched zone span iden-
tifier, a colon, and the order number of the matched zone span. For example, if a document reads <emphasis
role=”bold”><i>text</i> the <i>text</i></emphasis>, and you query for ‘ZONESPAN:(i,b) text’, then ZONESPAN-
LIST() will return the string “1:1 1:2 2:1” meaning that the first zone span matched “text” in spans 1 and 2, and the
second zone span in span 1 only.

8.31. SELECT syntax 105

Manticore Search Documentation, Release 2.6.1

8.31.10 WITHIN GROUP ORDER BY

This is a Manticore specific extension that lets you control how the best row within a group will to be selected. The
syntax matches that of regular ORDER BY clause:

SELECT *, INTERVAL(posted,NOW()-7*86400,NOW()-86400) AS timeseg, WEIGHT() AS w
FROM example WHERE MATCH('my search query')
GROUP BY siteid
WITHIN GROUP ORDER BY w DESC
ORDER BY timeseg DESC, w DESC

WITHIN GROUP ORDER BY on a string attribute is supported, with
respect for current collation (see :ref:`collations`).

8.31.11 HAVING

This is used to filter on GROUP BY values. Currently supports only one filtering condition.

SELECT id FROM plain GROUP BY title HAVING group_id=16;
SELECT id FROM plain GROUP BY attribute HAVING COUNT(*)>1;

Because of HAVING is implemented as a whole result set post-processing, result set for query with HAVING could
be less than max_matches‘ allows.

8.31.12 ORDER BY

Unlike in regular SQL, only column names (not expressions) are allowed and explicit ASC and DESC are required.
The columns however can be computed expressions:

SELECT *, WEIGHT()*10+docboost AS skey FROM example ORDER BY skey

You can use subqueries to speed up specific searches, which involve reranking, by postponing hard (slow) calcula-
tions as late as possible. For example, SELECT id,a_slow_expression() AS cond FROM an_index ORDER BY id
ASC, cond DESC LIMIT 100; could be better written as SELECT * FROM (SELECT id,a_slow_expression() AS
cond FROM an_index ORDER BY id ASC LIMIT 100) ORDER BY cond DESC; because in the first case the slow
expression would be evaluated for the whole set, while in the second one it would be evaluated just for a subset of
values.

ORDER BY on a string attribute is supported, with respect for current collation (see Collations).

ORDER BY RAND() syntax is supported. Note that this syntax is actually going to randomize the weight values and
then order matches by those randomized weights.

8.31.13 LIMIT

Both LIMIT N and LIMIT M,N forms are supported. Unlike in regular SQL (but like in Manticore API), an implicit
LIMIT 0,20 is present by default.

8.31.14 OPTION

This is a Manticore specific extension that lets you control a number of per-query options. The syntax is:

106 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

OPTION <optionname>=<value> [, ...]

Supported options and respectively allowed values are:

• agent_query_timeout - integer (max time in milliseconds to wait for remote queries to complete, see
agent_query_timeout under Index configuration options for details)

• boolean_simplify - 0 or 1, enables simplifying the query to speed it up

• comment - string, user comment that gets copied to a query log file

• cutoff - integer (max found matches threshold)

• field_weights - a named integer list (per-field user weights for ranking)

• global_idf - use global statistics (frequencies) from the global_idf file for IDF computations, rather than the
local index statistics.

• idf - a quoted, comma-separated list of IDF computation flags. Known flags are:

– normalized: BM25 variant, idf = log((N-n+1)/n), as per Robertson et al

– plain: plain variant, idf = log(N/n), as per Sparck-Jones

– tfidf_normalized: additionally divide IDF by query word count, so that TF*IDF fits into [0, 1] range

– tfidf_unnormalized: do not additionally divide IDF by query word count

where N is the collection size and n is the number of matched documents.

The historically default IDF (Inverse Document Frequency) in Manticore is equivalent to OPTION
idf='normalized,tfidf_normalized', and those normalizations may cause several
undesired effects.

First, idf=normalized causes keyword penalization. For instance, if you search for [the | something] and [the]
occurs in more than 50% of the documents, then documents with both keywords [the] and [something] will
get less weight than documents with just one keyword [something]. Using OPTION idf=plain avoids this.
Plain IDF varies in [0, log(N)] range, and keywords are never penalized; while the normalized IDF varies in
[-log(N), log(N)] range, and too frequent keywords are penalized.

Second, idf=tfidf_normalized causes IDF drift over queries. Historically, we additionally divided IDF by query
keyword count, so that the entire sum(tf*idf) over all keywords would still fit into [0,1] range. However, that
means that queries [word1] and [word1 | nonmatchingword2] would assign different weights to the exactly
same result set, because the IDFs for both “word1” and “nonmatchingword2” would be divided by 2. OPTION
idf=tfidf_unnormalized fixes that. Note that BM25, BM25A, BM25F() ranking factors will be scale
accordingly once you disable this normalization.

IDF flags can be mixed; plain and normalized are mutually exclusive; tfidf_unnormalized and
tfidf_normalized are mutually exclusive; and unspecified flags in such a mutually exclusive group take
their defaults. That means that OPTION idf=plain is equivalent to a complete OPTION idf='
plain,tfidf_normalized' specification.

• local_df - 0 or 1,automatically sum DFs over all the local parts of a distributed index, so that the IDF is
consistent (and precise) over a locally sharded index.

• index_weights - a named integer list (per-index user weights for ranking)

• max_matches - integer (per-query max matches value)

Maximum amount of matches that the daemon keeps in RAM for each index and can return to the client. Default
is 1000.

Introduced in order to control and limit RAM usage, max_matches setting defines how much matches will be
kept in RAM while searching each index. Every match found will still be processed; but only best N of them

8.31. SELECT syntax 107

Manticore Search Documentation, Release 2.6.1

will be kept in memory and return to the client in the end. Assume that the index contains 2,000,000 matches for
the query. You rarely (if ever) need to retrieve all of them. Rather, you need to scan all of them, but only choose
“best” at most, say, 500 by some criteria (ie. sorted by relevance, or price, or anything else), and display those
500 matches to the end user in pages of 20 to 100 matches. And tracking only the best 500 matches is much
more RAM and CPU efficient than keeping all 2,000,000 matches, sorting them, and then discarding everything
but the first 20 needed to display the search results page. max_matches controls N in that “best N” amount.

This parameter noticeably affects per-query RAM and CPU usage. Values of 1,000 to 10,000 are generally fine,
but higher limits must be used with care. Recklessly raising max_matches to 1,000,000 means that searchd
will have to allocate and initialize 1-million-entry matches buffer for every query. That will obviously increase
per-query RAM usage, and in some cases can also noticeably impact performance.

• max_query_time - integer (max search time threshold, msec)

• max_predicted_time - integer (max predicted search time, see predicted_time_costs)

• ranker - any of proximity_bm25, bm25, none, wordcount, proximity, matchany, fieldmask,
sph04, expr, or export (refer to Search results ranking for more details on each ranker)

• retry_count - integer (distributed retries count)

• retry_delay - integer (distributed retry delay, msec)

• reverse_scan - 0 or 1, lets you control the order in which full-scan query processes the rows

• sort_method - pq (priority queue, set by default) or kbuffer (gives faster sorting for already pre-sorted
data, e.g. index data sorted by id). The result set is in both cases the same; picking one option or the other may
just improve (or worsen!) performance.

• rand_seed - lets you specify a specific integer seed value for an ORDER BY RAND() query, for example:
. . . OPTION rand_seed=1234. By default, a new and different seed value is autogenerated for every query.

• low_priority - runs the query with idle priority.

• expand_keywords - 0 or 1, expand keywords with exact forms and/or stars when possible (refer to ex-
pand_keywords for more details).

Example:

SELECT * FROM test WHERE MATCH('@title hello @body world')
OPTION ranker=bm25, max_matches=3000,

field_weights=(title=10, body=3), agent_query_timeout=10000

8.31.15 FACET

This Manticore specific extension enables faceted search with subtree optimization. It is capable of returning multiple
result sets with a single SQL statement, without the need for complicated multi-queries. FACET clauses should be
written at the very end of SELECT statements with spaces between them.

FACET {expr_list} [BY {expr_list}] [ORDER BY {expr | FACET()} {ASC | DESC}] [LIMIT
→˓[offset,] count]
SELECT * FROM test FACET brand_id FACET categories;
SELECT * FROM test FACET brand_name BY brand_id ORDER BY brand_name ASC FACET
→˓property;

Working example:

108 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

mysql> SELECT *, IN(brand_id,1,2,3,4) AS b FROM facetdemo WHERE MATCH('Product') AND
→˓b=1 LIMIT 0,10
FACET brand_name, brand_id BY brand_id ORDER BY brand_id ASC
FACET property ORDER BY COUNT(*) DESC
FACET INTERVAL(price,200,400,600,800) ORDER BY FACET() ASC
FACET categories ORDER BY FACET() ASC;
+------+-------+----------+-------------------+-------------+----------+------------+-
→˓-----+
| id | price | brand_id | title | brand_name | property | categories |
→˓** |
+------+-------+----------+-------------------+-------------+----------+------------+-
→˓-----+
| 1 | 668 | 3 | Product Four Six | Brand Three | Three | 11,12,13 |
→˓ 1 |
| 2 | 101 | 4 | Product Two Eight | Brand Four | One | 12,13,14 |
→˓ 1 |
| 8 | 750 | 3 | Product Ten Eight | Brand Three | Five | 13 |
→˓ 1 |
| 9 | 49 | 1 | Product Ten Two | Brand One | Three | 13,14,15 |
→˓ 1 |
| 13 | 613 | 1 | Product Six Two | Brand One | Eight | 13 |
→˓ 1 |
| 20 | 985 | 2 | Product Two Six | Brand Two | Nine | 10 |
→˓ 1 |
| 22 | 501 | 3 | Product Five Two | Brand Three | Four | 12,13,14 |
→˓ 1 |
| 23 | 765 | 1 | Product Six Seven | Brand One | Nine | 11,12 |
→˓ 1 |
| 28 | 992 | 1 | Product Six Eight | Brand One | Two | 12,13 |
→˓ 1 |
| 29 | 259 | 1 | Product Nine Ten | Brand One | Five | 12,13,14 |
→˓ 1 |
+------+-------+----------+-------------------+-------------+----------+------------+-
→˓-----+
+-------------+----------+----------+
| brand_name | brand_id | count(*) |
+-------------+----------+----------+
| Brand One | 1 | 1012 |
| Brand Two | 2 | 1025 |
| Brand Three | 3 | 994 |
| Brand Four | 4 | 973 |
+-------------+----------+----------+
+----------+----------+
| property | count(*) |
+----------+----------+
| One | 427 |
| Five | 420 |
| Seven | 420 |
| Two | 418 |
| Three | 407 |
| Six | 401 |
| Nine | 396 |
| Eight | 387 |
| Four | 371 |
| Ten | 357 |
+----------+----------+
+---------------------------------+----------+

(continues on next page)

8.31. SELECT syntax 109

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| interval(price,200,400,600,800) | count(*) |
+---------------------------------+----------+
| 0 | 799 |
| 1 | 795 |
| 2 | 757 |
| 3 | 833 |
| 4 | 820 |
+---------------------------------+----------+
+------------+----------+
| categories | count(*) |
+------------+----------+
| 10 | 961 |
| 11 | 1653 |
| 12 | 1998 |
| 13 | 2090 |
| 14 | 1058 |
| 15 | 347 |
+------------+----------+

8.31.16 Subselects

In format SELECT * FROM (SELECT ... ORDER BY cond1 LIMIT X) ORDER BY cond2 LIMIT
Y. The outer select allows only ORDER BY and LIMIT clauses. Subselects currently have 2 usage cases:

1. We have a query with 2 ranking UDFs, one very fast and the other one slow and we perform a full-text search
will a big match result set. Without subselect the query would look like

SELECT id,slow_rank() as slow,fast_rank() as fast FROM index
WHERE MATCH(‘some common query terms’) ORDER BY fast DESC, slow DESC

→˓LIMIT 20
OPTION max_matches=1000;

With subselects the query can be rewritten as :

SELECT * FROM
(SELECT id,slow_rank() as slow,fast_rank() as fast FROM index WHERE

MATCH(‘some common query terms’)
ORDER BY fast DESC LIMIT 100 OPTION max_matches=1000)

ORDER BY slow DESC LIMIT 20;

In the initial query the slow_rank() UDF is computed for the entire match result set. With subselects, only
fast_rank() is computed for the entire match result set, while slow_rank() is only computed for a limited set.

2. The second case comes handy for large result set coming from a distributed index.

For this query:

SELECT * FROM my_dist_index WHERE some_conditions LIMIT 50000;

If we have 20 nodes, each node can send back to master a number of 50K records, resulting in 20 x 50K = 1M
records, however as the master sends back only 50K (out of 1M), it might be good enough for us for the nodes
to send only the top 10K records. With subselect we can rewrite the query as:

SELECT * FROM
(SELECT * FROM my_dist_index WHERE some_conditions LIMIT 10000)

ORDER by some_attr LIMIT 50000;

110 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

In this case, the nodes receive only the inner query and execute. This means the master will receive only
20x10K=200K records. The master will take all the records received, reorder them by the OUTER clause and
return the best 50K records. The subselect help reducing the traffic between the master and the nodes and also
reduce the master’s computation time (as it process only 200K instead of 1M).

8.32 SELECT @@system_variable syntax

SELECT @@system_variable [LIMIT [offset,] row_count]

This is currently a placeholder query that does nothing and reports success. That is in order to keep compatibility with
frameworks and connectors that automatically execute this statement.

8.33 SET syntax

SET [GLOBAL] server_variable_name = value
SET [INDEX index_name] GLOBAL @user_variable_name = (int_val1 [, int_val2, ...])
SET NAMES value
SET @@dummy_variable = ignored_value

SET statement modifies a variable value. The variable names are case-insensitive. No variable value changes survive
server restart.

SET NAMES statement and SET @@variable_name syntax, both introduced do nothing. They were implemented to
maintain compatibility with 3rd party MySQL client libraries, connectors, and frameworks that may need to run this
statement when connecting.

There are the following classes of the variables:

1. per-session server variable

2. global server variable

3. global user variable

4. global distributed variable

Global user variables are shared between concurrent sessions. Currently, the only supported value type is the list of
BIGINTs, and these variables can only be used along with IN() for filtering purpose. The intended usage scenario is
uploading huge lists of values to searchd (once) and reusing them (many times) later, saving on network overheads.
Global user variables might be either transferred to all agents of distributed index or set locally in case of local index
defined at distibuted index. Example:

// in session 1
mysql> SET GLOBAL @myfilter=(2,3,5,7,11,13);
Query OK, 0 rows affected (0.00 sec)

// later in session 2
mysql> SELECT * FROM test1 WHERE group_id IN @myfilter;
+------+--------+----------+------------+-----------------+------+
| id | weight | group_id | date_added | title | tag |
+------+--------+----------+------------+-----------------+------+
| 3 | 1 | 2 | 1299338153 | another doc | 15 |
| 4 | 1 | 2 | 1299338153 | doc number four | 7,40 |
+------+--------+----------+------------+-----------------+------+
2 rows in set (0.02 sec)

8.32. SELECT @@system_variable syntax 111

Manticore Search Documentation, Release 2.6.1

Per-session and global server variables affect certain server settings in the respective scope. Known per-session server
variables are:

• AUTOCOMMIT = {0 | 1}

• Whether any data modification statement should be implicitly wrapped by BEGIN and COMMIT.

• COLLATION_CONNECTION = collation_name

• Selects the collation to be used for ORDER BY or GROUP BY on string values in the subsequent queries. Refer
to the section called “Collations” <collations> for a list of known collation names.

• CHARACTER_SET_RESULTS = charset_name

• Does nothing; a placeholder to support frameworks, clients, and connectors that attempt to automatically enforce
a charset when connecting to a Manticore server.

• SQL_AUTO_IS_NULL = value

• Does nothing; a placeholder to support frameworks, clients, and connectors that attempt to automatically enforce
a charset when connecting to a Manticore server.

• SQL_MODE = value

• Does nothing; a placeholder to support frameworks, clients, and connectors that attempt to automatically enforce
a charset when connecting to a Manticore server.

• PROFILING = {0 | 1}

• Enables query profiling in the current session. Defaults to 0. See also SHOW PROFILE syntax.

Known global server variables are:

• QUERY_LOG_FORMAT = {plain | sphinxql}

• Changes the current log format.

• LOG_LEVEL = {info | debug | debugv | debugvv}

• Changes the current log verboseness level.

• QCACHE_MAX_BYTES = <value>

• Changes the query cache RAM use limit to a given value.

• QCACHE_THRESH_MSEC = <value>

• Changes the query cache minimum wall time threshold to a given value.

• QCACHE_TTL_SEC = <value>

• Changes the query cache TTL for a cached result to a given value.

• MAINTENANCE = {0 | 1}

• When set to 1, puts the server in maintenance mode. Only clients with vip connections can execute queries in
this mode. All new non-vip incoming connections are refused.

• GROUPING_IN_UTC = {0 | 1}

• When set to 1, cause timed grouping functions (day(), month(), year(), yearmonth(), yearmonthday()) to be
calculated in utc. Read the doc for grouping_in_utc config params for more details.

Examples:

112 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL query_log_format=sphinxql;
Query OK, 0 rows affected (0.00 sec)

8.34 SET TRANSACTION syntax

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ
| SERIALIZABLE }

SET TRANSACTION statement does nothing. It was implemented to maintain compatibility with 3rd party MySQL
client libraries, connectors, and frameworks that may need to run this statement when connecting.

Example:

mysql> SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
Query OK, 0 rows affected (0.00 sec)

8.35 SHOW AGENT STATUS

SHOW AGENT ['agent'|'index'] STATUS [LIKE pattern]

Displays the statistic of remote agents or distributed index. It includes the values like the age of the last request, last
answer, the number of different kind of errors and successes, etc. The statistic is shown for every agent for last 1, 5
and 15 intervals, each of them of ha_period_karma seconds. The command exists only in sphinxql.

mysql> SHOW AGENT STATUS;
+------------------------------------+----------------------------+
| Variable_name | Value |
+------------------------------------+----------------------------+
| status_period_seconds | 60 |
| status_stored_periods | 15 |
| ag_0_hostname | 192.168.0.202:6713 |
| ag_0_references | 2 |
| ag_0_lastquery | 0.41 |
| ag_0_lastanswer | 0.19 |
| ag_0_lastperiodmsec | 222 |
| ag_0_errorsarow | 0 |
| ag_0_1periods_query_timeouts | 0 |
| ag_0_1periods_connect_timeouts | 0 |
| ag_0_1periods_connect_failures | 0 |
| ag_0_1periods_network_errors | 0 |
| ag_0_1periods_wrong_replies | 0 |
| ag_0_1periods_unexpected_closings | 0 |
| ag_0_1periods_warnings | 0 |
| ag_0_1periods_succeeded_queries | 27 |
| ag_0_1periods_msecsperquery | 232.31 |
| ag_0_5periods_query_timeouts | 0 |
| ag_0_5periods_connect_timeouts | 0 |

(continues on next page)

8.34. SET TRANSACTION syntax 113

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| ag_0_5periods_connect_failures | 0 |
| ag_0_5periods_network_errors | 0 |
| ag_0_5periods_wrong_replies | 0 |
| ag_0_5periods_unexpected_closings | 0 |
| ag_0_5periods_warnings | 0 |
| ag_0_5periods_succeeded_queries | 146 |
| ag_0_5periods_msecsperquery | 231.83 |
| ag_1_hostname | 192.168.0.202:6714 |
| ag_1_references | 2 |
| ag_1_lastquery | 0.41 |
| ag_1_lastanswer | 0.19 |
| ag_1_lastperiodmsec | 220 |
| ag_1_errorsarow | 0 |
| ag_1_1periods_query_timeouts | 0 |
| ag_1_1periods_connect_timeouts | 0 |
| ag_1_1periods_connect_failures | 0 |
| ag_1_1periods_network_errors | 0 |
| ag_1_1periods_wrong_replies | 0 |
| ag_1_1periods_unexpected_closings | 0 |
| ag_1_1periods_warnings | 0 |
| ag_1_1periods_succeeded_queries | 27 |
| ag_1_1periods_msecsperquery | 231.24 |
| ag_1_5periods_query_timeouts | 0 |
| ag_1_5periods_connect_timeouts | 0 |
| ag_1_5periods_connect_failures | 0 |
| ag_1_5periods_network_errors | 0 |
| ag_1_5periods_wrong_replies | 0 |
| ag_1_5periods_unexpected_closings | 0 |
| ag_1_5periods_warnings | 0 |
| ag_1_5periods_succeeded_queries | 146 |
| ag_1_5periods_msecsperquery | 230.85 |
+------------------------------------+----------------------------+
50 rows in set (0.01 sec)

An optional LIKE clause is supported. Refer to SHOW META syntax for its syntax details.

mysql> SHOW AGENT STATUS LIKE '%5period%msec%';
+-----------------------------+--------+
| Key | Value |
+-----------------------------+--------+
| ag_0_5periods_msecsperquery | 234.72 |
| ag_1_5periods_msecsperquery | 233.73 |
| ag_2_5periods_msecsperquery | 343.81 |
+-----------------------------+--------+
3 rows in set (0.00 sec)

You can specify a particular agent by its address. In this case only that agent’s data will be displayed. Also, agent_
prefix will be used instead of ag_N_:

mysql> SHOW AGENT '192.168.0.202:6714' STATUS LIKE '%15periods%';
+-------------------------------------+--------+
| Variable_name | Value |
+-------------------------------------+--------+
| agent_15periods_query_timeouts | 0 |
| agent_15periods_connect_timeouts | 0 |
| agent_15periods_connect_failures | 0 |

(continues on next page)

114 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| agent_15periods_network_errors | 0 |
| agent_15periods_wrong_replies | 0 |
| agent_15periods_unexpected_closings | 0 |
| agent_15periods_warnings | 0 |
| agent_15periods_succeeded_queries | 439 |
| agent_15periods_msecsperquery | 231.73 |
+-------------------------------------+--------+
9 rows in set (0.00 sec)

Finally, you can check the status of the agents in a specific distributed index. It can be done with a SHOW AGENT
‘index’ STATUS statement. That statement shows the index HA status (ie. whether or not it uses agent mirrors
at all), and then the mirror information (specifically: address, blackhole and persistent flags, and the mirror selection
probability used when one of the weighted-probability strategies is in effect).

mysql> SHOW AGENT dist_index STATUS;
+--------------------------------------+--------------------------------+
| Variable_name | Value |
+--------------------------------------+--------------------------------+
| dstindex_1_is_ha | 1 |
| dstindex_1mirror1_id | 192.168.0.202:6713:loc |
| dstindex_1mirror1_probability_weight | 0.372864 |
| dstindex_1mirror1_is_blackhole | 0 |
| dstindex_1mirror1_is_persistent | 0 |
| dstindex_1mirror2_id | 192.168.0.202:6714:loc |
| dstindex_1mirror2_probability_weight | 0.374635 |
| dstindex_1mirror2_is_blackhole | 0 |
| dstindex_1mirror2_is_persistent | 0 |
| dstindex_1mirror3_id | dev1.sphinxsearch.com:6714:loc |
| dstindex_1mirror3_probability_weight | 0.252501 |
| dstindex_1mirror3_is_blackhole | 0 |
| dstindex_1mirror3_is_persistent | 0 |
+--------------------------------------+--------------------------------+
13 rows in set (0.00 sec)

8.36 SHOW CHARACTER SET syntax

SHOW CHARACTER SET

This is currently a placeholder query that does nothing and reports that a UTF-8 character set is available. It was added
in order to keep compatibility with frameworks and connectors that automatically execute this statement.

mysql> SHOW CHARACTER SET;
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

8.36. SHOW CHARACTER SET syntax 115

Manticore Search Documentation, Release 2.6.1

8.37 SHOW COLLATION syntax

SHOW COLLATION

This is currently a placeholder query that does nothing and reports success. That is in order to keep compatibility with
frameworks and connectors that automatically execute this statement.

mysql> SHOW COLLATION;
Query OK, 0 rows affected (0.00 sec)

8.38 SHOW DATABASES syntax

SHOW DATABASES

This is a dummy statement to support MySQL Workbench and other clients that require it. Currently, it does absolutely
nothing.

8.39 SHOW INDEX SETTINGS syntax

SHOW INDEX index_name[.N | CHUNK N] SETTINGS

Displays per-index settings in a sphinx.conf compliant file format, similar to the –dumpconfig option of the in-
dextool. The report provides a breakdown of all the index settings, including tokenizer and dictionary options. You
may also specify a particular chunk number for the RT indexes.

8.40 SHOW INDEX STATUS syntax

SHOW INDEX index_name STATUS

Displays various per-index statistics. Currently, those include:

• indexed_documents and indexed_bytes, number of the documents indexed and their text size in bytes, respec-
tively.

• field_tokens_XXX, sums of per-field lengths (in tokens) over the entire index (that is used internally in BM25A
and BM25F functions for ranking purposes). Only available for indexes built with index_field_lengths=1.

• ram_bytes, total size (in bytes) of the RAM-resident index portion.

• queries time statistics of last 1 minute, 5 minutes, 15 minutes and total since daemon start;data is encapsulated
as a JSON object which includes number of queries, min,max,avg,95 and 99 percentile values.

• queries found rows statistics of last 1 minute, 5 minutes, 15 minutes and total since daemon start;data is encap-
sulated as a JSON object which includes number of queries, min,max,avg,95 and 99 percentile values.

mysql> SHOW INDEX lj STATUS;
+--------------------+-------------+
| Variable_name | Value |
+--------------------+-------------+
| index_type | disk |

(continues on next page)

116 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| indexed_documents | 2495219 |
| indexed_bytes | 10380483879 |
| field_tokens_title | 6999145 |
| field_tokens_body | 1501825050 |
| total_tokens | 1508824195 |
| ram_bytes | 305963599 |
| disk_bytes | 5455804365 |
| mem_limit | 536870912 |
+--------------------+-------------+
8 rows in set (0.00 sec)

8.41 SHOW META syntax

SHOW META [LIKE pattern]

SHOW META shows additional meta-information about the latest query such as query time and keyword statistics. IO
and CPU counters will only be available if searchd was started with –iostats and –cpustats switches respectively. Ad-
ditional predicted_time, dist_predicted_time, [{local|dist}]*fetched*[{docs|hits|skips}] counters will only be available
if searchd was configured with predicted time costs and query had predicted_time in OPTION clause.

mysql> SELECT * FROM test1 WHERE MATCH('test|one|two');
+------+--------+----------+------------+
| id | weight | group_id | date_added |
+------+--------+----------+------------+
| 1 | 3563 | 456 | 1231721236 |
| 2 | 2563 | 123 | 1231721236 |
| 4 | 1480 | 2 | 1231721236 |
+------+--------+----------+------------+
3 rows in set (0.01 sec)

mysql> SHOW META;
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| total | 3 |
| total_found | 3 |
| time | 0.005 |
| keyword[0] | test |
| docs[0] | 3 |
| hits[0] | 5 |
| keyword[1] | one |
| docs[1] | 1 |
| hits[1] | 2 |
| keyword[2] | two |
| docs[2] | 1 |
| hits[2] | 2 |
| cpu_time | 0.350 |
| io_read_time | 0.004 |
| io_read_ops | 2 |
| io_read_kbytes | 0.4 |
| io_write_time | 0.000 |
| io_write_ops | 0 |
| io_write_kbytes | 0.0 |

(continues on next page)

8.41. SHOW META syntax 117

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| agents_cpu_time | 0.000 |
| agent_io_read_time | 0.000 |
| agent_io_read_ops | 0 |
| agent_io_read_kbytes | 0.0 |
| agent_io_write_time | 0.000 |
| agent_io_write_ops | 0 |
| agent_io_write_kbytes | 0.0 |
+-----------------------+-------+
12 rows in set (0.00 sec)

You can also use the optional LIKE clause. It lets you pick just the variables that match a pattern. The pattern syntax
is that of regular SQL wildcards, that is, ‘%’ means any number of any characters, and ‘_’ means a single character:

mysql> SHOW META LIKE 'total%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| total | 3 |
| total_found | 3 |
+-----------------------+-------+
2 rows in set (0.00 sec)

SHOW META can be used after executing a CALL PQ statement. In this case, it provides a different output.

8.42 SHOW PLAN syntax

SHOW PLAN

SHOW PLAN displays the execution plan of the previous SELECT statement. The plan gets generated and stored
during the actual execution, so profiling must be enabled in the current session before running that statement. That
can be done with a SET profiling=1 statement.

Here’s a complete instrumentation example:

mysql> SET profiling=1 \G
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT id FROM lj WHERE MATCH('the i') LIMIT 1 \G

*************************** 1\. row ***************************
id: 39815
1 row in set (1.53 sec)

mysql> SHOW PLAN \G

*************************** 1\. row ***************************
Variable: transformed_tree

Value: AND(
AND(KEYWORD(the, querypos=1)),
AND(KEYWORD(i, querypos=2)))

1 row in set (0.00 sec)

And here’s a less trivial example that shows how the actually evaluated query tree can be rather different from the
original one because of expansions and other transformations:

118 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

mysql> SELECT * FROM test WHERE MATCH('@title abc* @body hey') \G SHOW PLAN \G
...

*************************** 1\. row ***************************
Variable: transformed_tree

Value: AND(
OR(fields=(title), KEYWORD(abcx, querypos=1, expanded), KEYWORD(abcm, querypos=1,

→˓expanded)),
AND(fields=(body), KEYWORD(hey, querypos=2)))

1 row in set (0.00 sec)

8.43 SHOW PLUGINS syntax

SHOW PLUGINS

Displays all the loaded plugins and UDFs. “Type” column should be one of the udf, ranker, index_token_filter, or
query_token_filter. “Users” column is the number of thread that are currently using that plugin in a query. “Extra”
column is intended for various additional plugin-type specific information; currently, it shows the return type for the
UDFs and is empty for all the other plugin types.

mysql> SHOW PLUGINS;
+------+----------+----------------+-------+-------+
| Type | Name | Library | Users | Extra |
+------+----------+----------------+-------+-------+
| udf | sequence | udfexample.dll | 0 | INT |
+------+----------+----------------+-------+-------+
1 row in set (0.00 sec)

8.44 SHOW PROFILE syntax

SHOW PROFILE

SHOW PROFILE shows a detailed execution profile of the previous SQL statement executed in the current SphinxQL
session. Also, profiling must be enabled in the current session before running the statement to be instrumented. That
can be done with a SET profiling=1 statement. By default, profiling is disabled to avoid potential performance
implications, and therefore the profile will be empty.

Here’s a complete instrumentation example:

mysql> SET profiling=1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT id FROM lj WHERE MATCH('the test') LIMIT 1;
+--------+
| id |
+--------+
| 946418 |
+--------+
1 row in set (0.05 sec)

mysql> SHOW PROFILE;
+--------------+----------+----------+

(continues on next page)

8.43. SHOW PLUGINS syntax 119

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

| Status | Duration | Switches |
+--------------+----------+----------+
| unknown | 0.000610 | 6 |
| net_read | 0.000007 | 1 |
| dist_connect | 0.000036 | 1 |
| sql_parse | 0.000048 | 1 |
| dict_setup | 0.000001 | 1 |
| parse | 0.000023 | 1 |
| transforms | 0.000002 | 1 |
| init | 0.000401 | 3 |
| open | 0.000104 | 1 |
| read_docs | 0.001570 | 71 |
| read_hits | 0.003936 | 222 |
| get_docs | 0.029837 | 1347 |
| get_hits | 0.000548 | 1433 |
| filter | 0.000619 | 1274 |
| rank | 0.009892 | 2909 |
| sort | 0.001562 | 52 |
| finalize | 0.000250 | 1 |
| dist_wait | 0.000000 | 1 |
| aggregate | 0.000145 | 1 |
| net_write | 0.000031 | 1 |
+--------------+----------+----------+
20 rows in set (0.00 sec)

Status column briefly describes where exactly (in which state) was the time spent. Duration column shows the wall
clock time, in seconds. Switches column displays the number of times query engine changed to the given state. Those
are just logical engine state switches and not any OS level context switches nor function calls (even though some of
the sections can actually map to function calls) and they do not have any direct effect on the performance. In a sense,
number of switches is just a number of times when the respective instrumentation point was hit.

States in the profile are returned in a prerecorded order that roughly maps (but is not identical) to the actual query
order.

A list of states may (and will) vary over time, as we refine the states. Here’s a brief description of the currently profiled
states.

• unknown, generic catch-all state. Accounts for both not-yet-instrumented code, or just small miscellaneous
tasks that do not really belong in any other state, but are too small to deserve their own state.

• net_read, reading the query from the network (that is, the application).

• io, generic file IO time.

• dist_connect, connecting to remote agents in the distributed index case.

• sql_parse, parsing the SphinxQL syntax.

• dict_setup, dictionary and tokenizer setup.

• parse, parsing the full-text query syntax.

• transforms, full-text query transformations (wildcard and other expansions, simplification, etc).

• init, initializing the query evaluation.

• open, opening the index files.

• read_docs, IO time spent reading document lists.

• read_hits, IO time spent reading keyword positions.

120 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

• get_docs, computing the matching documents.

• get_hits, computing the matching positions.

• filter, filtering the full-text matches.

• rank, computing the relevance rank.

• sort, sorting the matches.

• finalize, finalizing the per-index search result set (last stage expressions, etc).

• dist_wait, waiting for the remote results from the agents in the distributed index case.

• aggregate, aggregating multiple result sets.

• net_write, writing the result set to the network.

8.45 SHOW STATUS syntax

SHOW STATUS [LIKE pattern]

SHOW STATUS displays a number of useful performance counters. IO and CPU counters will only be available if
searchd was started with –iostats and –cpustats switches respectively.

mysql> SHOW STATUS;
+--------------------+-------+
| Counter | Value |
+--------------------+-------+
| uptime | 216 |
| connections | 3 |
| maxed_out | 0 |
| command_search | 0 |
| command_excerpt | 0 |
| command_update | 0 |
| command_keywords | 0 |
| command_persist | 0 |
| command_status | 0 |
| agent_connect | 0 |
| agent_retry | 0 |
| queries | 10 |
| dist_queries | 0 |
| query_wall | 0.075 |
| query_cpu | OFF |
| dist_wall | 0.000 |
| dist_local | 0.000 |
| dist_wait | 0.000 |
| query_reads | OFF |
| query_readkb | OFF |
| query_readtime | OFF |
| avg_query_wall | 0.007 |
| avg_query_cpu | OFF |
| avg_dist_wall | 0.000 |
| avg_dist_local | 0.000 |
| avg_dist_wait | 0.000 |
| avg_query_reads | OFF |
| avg_query_readkb | OFF |
| avg_query_readtime | OFF |

(continues on next page)

8.45. SHOW STATUS syntax 121

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

+--------------------+-------+
29 rows in set (0.00 sec)

An optional LIKE clause is supported. Refer to SHOW META syntax for its syntax details.

8.46 SHOW TABLES syntax

SHOW TABLES [LIKE pattern]

SHOW TABLES statement enumerates all currently active indexes along with their types. Existing index types are
local, distributed, rt,and template respectively. Example:

mysql> SHOW TABLES;
+-------+-------------+
| Index | Type |
+-------+-------------+
| dist1 | distributed |
| rt | rt |
| test1 | local |
| test2 | local |
+-------+-------------+
4 rows in set (0.00 sec)

An optional LIKE clause is supported. Refer to SHOW META syntax for its syntax details.

mysql> SHOW TABLES LIKE '%4';
+-------+-------------+
| Index | Type |
+-------+-------------+
| dist4 | distributed |
+-------+-------------+
1 row in set (0.00 sec)

8.47 SHOW THREADS syntax

SHOW THREADS [OPTION columns=width]

SHOW THREADS lists all currently active client threads, not counting system threads. It returns a table with columns
that describe:

• thread id

• connection protocol, possible values are sphinxapi and sphinxql

• thread state, possible values are handshake, net_read, net_write, query, net_idle

• time since the current state was changed (in seconds, with microsecond precision)

• information about queries

The ‘Info’ column will be cut at the width you’ve specified in the ‘columns=width’ option (notice the third row in the
example table below). This column will contain raw SphinxQL queries and, if there are API queries, full text syntax
and comments will be displayed. With an API-snippet, the data size will be displayed along with the query. This

122 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

column will also contain active system thread started with SYSTEM and time since current iteration started in system
endless loop.

mysql> SHOW THREADS OPTION columns=50;
+------+----------+-------+----------+--
→˓----+
| Tid | Proto | State | Time | Info
→˓ |
+------+----------+-------+----------+--
→˓----+
| 5168 | sphinxql | query | 0.000002 | show threads option columns=50
→˓ |
| 5175 | sphinxql | query | 0.000002 | select * from rt where match ('the box')
→˓ |
| 1168 | sphinxql | query | 0.000002 | select * from rt where match ('the box and
→˓faximi |
| 9580 | - | - | 0.019280 | SYSTEM OPTIMIZE
→˓ |
+------+----------+-------+----------+--
→˓----+
3 row in set (0.00 sec)

8.48 SHOW VARIABLES syntax

SHOW [{GLOBAL | SESSION}] VARIABLES [WHERE variable_name='xxx']

SHOW VARIABLES statement was added to improve compatibility with 3rd party MySQL connectors and frame-
works that automatically execute this statement.

It returns the current values of a few server-wide variables. Also, support for GLOBAL and SESSION clauses was
added.

mysql> SHOW GLOBAL VARIABLES;
+----------------------+----------+
| Variable_name | Value |
+----------------------+----------+
| autocommit | 1 |
| collation_connection | libc_ci |
| query_log_format | sphinxql |
| log_level | info |
+----------------------+----------+
4 rows in set (0.00 sec)

Support for WHERE variable_name clause was added, to help certain connectors.

8.49 SHOW WARNINGS syntax

SHOW WARNINGS

SHOW WARNINGS statement can be used to retrieve the warning produced by the latest query. The error message
will be returned along with the query itself:

8.48. SHOW VARIABLES syntax 123

Manticore Search Documentation, Release 2.6.1

mysql> SELECT * FROM test1 WHERE MATCH('@@title hello') \G
ERROR 1064 (42000): index test1: syntax error, unexpected TOK_FIELDLIMIT
near '@title hello'

mysql> SELECT * FROM test1 WHERE MATCH('@title -hello') \G
ERROR 1064 (42000): index test1: query is non-computable (single NOT operator)

mysql> SELECT * FROM test1 WHERE MATCH('"test doc"/3') \G

*************************** 1\. row ***************************
id: 4

weight: 2500
group_id: 2

date_added: 1231721236
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS \G

*************************** 1\. row ***************************
Level: warning
Code: 1000

Message: quorum threshold too high (words=2, thresh=3); replacing quorum operator
with AND operator

1 row in set (0.00 sec)

8.50 TRUNCATE RTINDEX syntax

TRUNCATE RTINDEX rtindex

TRUNCATE RTINDEX clears the RT index completely. It disposes the in-memory data, unlinks all the index data
files, and releases the associated binary logs.

mysql> TRUNCATE RTINDEX rt;
Query OK, 0 rows affected (0.05 sec)

You may want to use this if you are using RT indices as “delta index” files; when you build the main index, you need
to wipe the delta index, and thus TRUNCATE RTINDEX. You also need to use this command before attaching an
index; see ATTACH INDEX syntax.

8.51 UPDATE syntax

UPDATE index SET col1 = newval1 [, ...] WHERE where_condition [OPTION opt_name = opt_
→˓value [, ...]]

Multiple attributes and values can be specified in a single statement. Both RT and disk indexes are supported.

All attributes types (int, bigint, float, MVA), except for strings and JSON attributes, can be dynamically updated.

where_condition has the same syntax as in the SELECT statement (see SELECT syntax for details).

When assigning the out-of-range values to 32-bit attributes, they will be trimmed to their lower 32 bits without a
prompt. For example, if you try to update the 32-bit unsigned int with a value of 4294967297, the value of 1 will
actually be stored, because the lower 32 bits of 4294967297 (0x100000001 in hex) amount to 1 (0x00000001 in hex).

MVA values sets for updating (and also for INSERT or REPLACE, refer to INSERT and REPLACE syntax) must be
specified as comma-separated lists in parentheses. To erase the MVA value, just assign () to it.

124 Chapter 8. SphinxQL reference

Manticore Search Documentation, Release 2.6.1

UPDATE can be used to update integer and float values in JSON array. No strings, arrays and other types yet.

mysql> UPDATE myindex SET enabled=0 WHERE id=123;
Query OK, 1 rows affected (0.00 sec)

mysql> UPDATE myindex
SET bigattr=-100000000000,
fattr=3465.23,
mvattr1=(3,6,4),
mvattr2=()

WHERE MATCH('hehe') AND enabled=1;
Query OK, 148 rows affected (0.01 sec)

OPTION clause. This is a Manticore specific extension that lets you control a number of per-update options. The
syntax is:

OPTION <optionname>=<value> [, ...]

The list of allowed options are the same as for SELECT statement. Specifically for UPDATE statement you can use
these options:

• ‘ignore_nonexistent_columns’ - points that the update will silently ignore any warnings about trying to update
a column which is not exists in current index schema.

‘strict’ - this option is used while updating JSON attributes. It’s possible to update just some types in JSON.
And if you try to update, for example, array type you’ll get error with ‘strict’ option on and warning otherwise.

8.51. UPDATE syntax 125

Manticore Search Documentation, Release 2.6.1

126 Chapter 8. SphinxQL reference

CHAPTER 9

HTTP API reference

Manticore search daemon supports HTTP protocol and can be accessed with regular HTTP clients. Available only with
workers = thread_pool (see workers). To enabled the HTTP protocol, a listen directive with http specified as
a protocol needs to be declared:

listen = localhost:8080:http

Supported endpoints:

9.1 /search API

Allows a simple full-text search, parameters can be : * index (index or list of indexes) * match (equivalent of
MATCH()) * select (as SELECT clause) * group (grouping attribute) * order (SQL-like sorting) * limit (equivalent of
LIMIT 0,N)

Response is a JSON document containing an array of attrs,matches and meta similar with the SphinxAPI response.

curl -X POST 'http://manticoresearch:9308/search/'
-d 'index=forum&match=@subject php manticore&select=id,subject,author_id&limit=5'

{
"attrs":[

"forum_id",
"author_id",
"subject",
"id"

],
"matches":[

],
"meta":{

"total":0,
"total_found":0,

(continues on next page)

127

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"time":0.000,
"words":[

{
"word":"php",
"docs":3252,
"hits":11166

},
{

"word":"manticore",
"docs":0,
"hits":0

}
]

}
}

9.2 /sql API

Allows running a SELECT SphinxQL, set as query parameter.

Response is a JSON document containing an array of attrs,matches and meta similar with the SphinxAPI response.

curl -X POST 'http://manticoresearch:9308/sql/'
-d "query=select id,subject,author_id from forum where match('@subject php manticore
→˓') group by
author_id order by id desc limit 0,5"

{
"attrs":[

"forum_id",
"author_id",
"subject",
"id",
"@groupby",
"@count"

],
"matches":[

],
"meta":{

"total":123,
"total_found":123,
"time":0.087,
"words":[

{
"word":"php",
"docs":3252,
"hits":11166

},
{

"word":"manticore",
"docs":1242,
"hits":4352

}

(continues on next page)

128 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

]
}

}

9.3 /json API

This endpoint expects request body with queries defined as JSON document. Responds with JSON documents con-
taining result and/or information about executed query.

Warning: Please note that this endpoint is in preview stage. Some functionalities are not yet complete and syntax
may suffer changes in future. Read careful changelog of future updates to avoid possible breakages.

9.3.1 json/bulk

The json/bulk endpoint allows you to perform several insert, update or delete operations in a single call. This
endpoint only works with data that has Content-Type set to application/x-ndjson. The data itself should
be formatted as a newline-delimited json (NDJSON). Basically it means that each line should contain exactly one json
statement and end with a newline \n and maybe a \r.

Example:

{ "insert" : { "index" : "test", "id" : 1, "doc": { "gid" : 10, "content" : "doc one"
→˓} } }
{ "insert" : { "index" : "test", "id" : 2, "doc": { "gid" : 20, "content" : "doc two"
→˓} } }

This inserts two documents to index test. Each statement starts with an action type (in this case, insert). Here’s
a list of the supported actions:

• insert: Inserts a document. Syntax is the same as in json/insert.

• create: a synonym for insert

• replace: Replaces a document. Syntax is the same as in json/replace.

• index: a synonym for replace

• update: Updates a document. Syntax is the same as in json/update.

• delete: Deletes a document. Syntax is the same as in json/delete.

Updates by query and deletes by query are also supported.

Example:

{ "update" : { "index" : "test", "doc": { "tag" : 1000 }, "query": { "range": { "price
→˓": { "gte": 1000 } } } } }
{ "delete" : { "index" : "test", "query": { "range": { "price": { "lt": 1000 } } } } }

Note that the bulk operation stops at the first query that results in an error.

9.3. /json API 129

Manticore Search Documentation, Release 2.6.1

9.3.2 json/delete

This endpoint allows you to delete documents from indexes, similar to SphinxQL’s DELETE syntax.

Example:

{
"index":"test",
"id":1

}

The daemon will respond with a JSON object stating if the operation was successfull or not:

{
"_index": "test",
"_id": 1,
"found": true,
"result": "deleted"

}

This deletes a document that has and id of 1 from an index named test.

As in json/update, you can do a delete by query.

{
"index":"test",

"query":
{
"match": { "*": "apple" }

}
}

This deletes all documents that match a given query.

9.3.3 json/insert

Documents can be inserted into RT indexes using the /json/insert endpoint. As with SphinxQL’s INSERT and
REPLACE syntax, documents with ids that already exist will not be overwritten. You can also use the /json/create
endpoint, it’s a synonym for json/insert.

Here’s how you can index a simple document:

{
"index":"test",
"id":1

}

This creates a document with an id specified by id in an index specified by the index property. This document has
empty fulltext fields and all attributes are set to their default values. However, you can use the optional doc property
to set field and attribute values:

{
"index":"test",
"id":1,
"doc":
{

(continues on next page)

130 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"gid" : 10,
"content" : "new document"

}
}

The daemon will respond with a JSON object stating if the operation was successfull or not:

{
"_index": "test",
"_id": 1,
"created": true,
"result": "created"

}

MVA attributes are inserted as arrays of numbers. JSON attributes can be inserted either as JSON objects or as strings
containing escaped JSON:

{
"index":"test",
"id":1,
"doc":
{
"mva" : [1,2,3,4,5],
"json1":
{

"string": "name1",
"int": 1,
"array" : [100,200],
"object": {}

},
"json2": "{\"string\":\"name2\",\"int\":2,\"array\":[300,400],\"object\":{}}",
"content" : "new document"

}
}

9.3.4 json/pq

Percolate are accepted at /json/pq endpoint. Here is an example:

curl -X POST 'http://manticoresearch:9308//json/pq/index_name/search'
-d '{}'

to list of stored queries at "index_name" percolate index.

Store query

Query might be inserted:

• with ID auto generated - at endpoint json/pq/index_name/doc

• with ID explicitly set - at endpoint json/pq/index_name/doc/ID

To replace already stored query ID should be provided along with refresh=1 argument, such as json/pq/
index_pq_1/doc/2?refresh=1

There is 2 formats of full-text queries that might be stored into index:

9.3. /json API 131

Manticore Search Documentation, Release 2.6.1

• query in json\search compartible format, described at json/search

• query in SpinxQL compartible format, described at extended query syntax

tags and filters also might be stored along with query, for details refer to Tags However there is no way to mix
json\search native filters with filters field, only one type of filter might be used per query.

Example of json\search query with tags:

PUT json/pq/idx_pq_1/doc
{

"query": { "match": { "title": "test" } },
"tags": ["fid", "fid_x1"]

}

Example of json\search query there terms combined via and operator:

PUT json/pq/idx_pq_1/doc
{

"query": { "match": { "title": { "query": "cat test", "operator": "and" } } }
}

Example of json\search query with native filters:

PUT json/pq/idx_pq_1/doc
{

"query":
{

"match": { "title": "tree" },
"range": { "gid": { "lt": 3 } }

}
}

Example of json\search boolean query:

PUT json/pq/idx_pq_1/doc
{

"query":
{

"bool":
{

"must": [
{ "match": { "title": "tree" } },
{ "match": { "title": "test" } }]

}
}

}

Example of json\search query with SphinxQL filters and ID set:

PUT json/pq/idx_pq_1/doc/17
{

"query":
{

"match": { "title": "tree" }
},
"filters": "gid < 3 or zip = 049"

}

Example of Sphinx query with filters and tags that repalces already stored query with 2nd ID:

132 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

PUT json/pq/idx_pq_1/doc/2?refresh=1
{

"query":
{

"ql": "(test me !he) || (testing place)"
},
"filters": "zip IN (1,7,9)",
"tags": ["zip", "location", "city"]

}

The responce:

{
"index": "idx_pq_1",
"type": "doc",
"_id": "2",
"result": "created"

}

there result field got value created for inserted query or value updated for query that got successfully replaced.

Search matching document

To search for queries matching document(s) the _search endpoint with body should be queried

Example of single document matching:

POST json/pq/idx_pq_1/_search
{

"query":
{

"percolate":
{

"document" : { "title" : "some text to match" }
}

}
}

The responce:

{
"timed_out": false,
"hits": {

"total": 2,
"max_score": 1,
"hits": [

{
"_index": "idx_pq_1",
"_type": "doc",
"_id": "2",
"_score": "1",
"_source": {

"query": {
"match": {

"title": "some"
},

(continues on next page)

9.3. /json API 133

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

}
}

},
{

"_index": "idx_pq_1",
"_type": "doc",
"_id": "5",
"_score": "1",
"_source": {

"query": {
"ql": "some | none"

}
}

}
]

}
}

there queries matched located at hits array with their ID at _id field and full-text part at _source field.

Example of multiple documents matching:

POST json/pq/idx_pq_1/_search
{

"query":
{

"percolate":
{

"documents" :
[

{ "title" : "some text to match" },
{ "title" : "another text to match" },
{ "title" : "new document to match" }

]
}

}
}

The responce:

{
"timed_out": false,
"hits": {

"total": 1,
"max_score": 1,
"hits": [
{

"_index": "idx_pq_1",
"_type": "doc",
"_id": "3",
"_score": "1",
"_source": {

"query": {
"match": {

"title": "text"
}

}

(continues on next page)

134 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

},
"fields": {

"_percolator_document_slot": [
1,
2

]
}

}]
}

}

there queries matched located at hits array and documents matched for each query is located at fields object
_percolator_document_slot array.

List stored queries

_search endpoint without body shows all stored queries in index, similar to SphinxQL’s List stored queries.

Example:

POST /json/pq/idx_pq_1/search
{
}

The responce:

{
"timed_out": false,
"hits": {

"total": 4,
"max_score": 1,
"hits": [

{
"_index": "idx_pq_1",
"_type": "doc",
"_id": "1",
"_score": "1",
"_source": {

"query": {
"bool": {

"must": [
{

"match": {
"title

→˓": "tree"
}

},
{

"match": {
"title

→˓": "test"
}

}
]

}
}

(continues on next page)

9.3. /json API 135

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

}
},
{

"_index": "idx_pq_1",
"_type": "doc",
"_id": "2",
"_score": "1",
"_source": {

"query": {
"match": {

"title": "tree"
},
"range": {

"gid": {
"lt": 3

}
}

}
}

},
{

"_index": "idx_pq_1",
"_type": "doc",
"_id": "4",
"_score": "1",
"_source": {

"query": {
"ql": "tree !new"

}
}

},
{

"_index": "idx_pq_1",
"_type": "doc",
"_id": "5",
"_score": "1",
"_source": {

"query": {
"ql": "new | old"

}
}

}
]

}
}

There hits contains queries stored at percolate index with query ID at _id field and _source field is full text
query in SpinxQL compartible format, described at extended query syntax or json\search compartible format,
described at jsonsearch

Delete stored queries

This endpoint allows to delete queries from index, similar to SphinxQL’s Delete query. Either id or tags lists supported

Example:

136 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

DELETE json/pq/idx_pq_1/_delete_by_query
{

"id": [2, 10]
}

The daemon will respond with a JSON object stating if the operation was successful or not:

{
"timed_out": false,
"deleted": 2,
"total": 2,
"failures": []

}

This deletes 2 documents from an index named idx_pq_1.

9.3.5 json/replace

json/replace works similar to SphinxQL’s INSERT and REPLACE syntax. It inserts a new document into an
index and if the index already has a document with the same id, it is deleted before the new document is inserted.
There’s also a synonym endpoint, json/index.

{
"index":"test",
"id":1,
"doc":
{
"gid" : 10,
"content" : "updated document"

}
}

The daemon will respond with a JSON object stating if the operation was successfull or not:

{
"_index": "test",
"_id": 1,
"created": false,
"result": "updated"

}

9.3.6 json/search

Searches are accepted at /json/search endpoint. Here’s an example of a simple query:

curl -X POST 'http://manticoresearch:9308/json/search'
-d '{"index":"test","query":{"match":{"title":"keyword"}}}'

"index" clause sets the list of indexes to search through. You can specify a single index: "index": "test", a
comma-separated list of indexes: "index": "test1,test2,test3" or use _all or * to issue the query to
all available indexes:

"index": "_all"
"index": "*"

9.3. /json API 137

Manticore Search Documentation, Release 2.6.1

"query" clause contains fulltext queries (if any) and filters. It can be used to organize queries and filters into a tree
(using the bool query).

Fulltext queries

The following fulltext queries are supported:

match

"match" is a simple query that matches the specified keywords in the specified fields

"query":
{

"match": { "field": "keyword" }
}

Just as in case of indexes, you can specify a list of fields:

"match":
{

"field1,field2": "keyword"
}

Or you can use "_all" or "*" to search all fields.

You can search all fields except one using "!field":

"match":
{

"!field1": "keyword"
}

By default keywords are combined using the OR operator. However, you can change that behaviour using the
"operator" clause:

"query":
{

"match":
{
"content,title":
{

"query":"keyword",
"operator":"or"

}
}

}

"operator" can be set to "or" or "and".

match_phrase

"match_phrase" is a query that matches the entire phrase. It is similar to a phrase operator in SphinxQL. Here’s
an example:

"query":
{

"match_phrase": { "_all" : "had grown quite" }
}

138 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

match_all

"match_all" is a query that matches all documents. The syntax looks like this:

"query":
{

"match_all": {}
}

It can be used to create fullscan queries. However, it is not required as you can just specify the filters without a fulltext
query.

Bool queries

A bool query matches documents matching boolean combinations of other queries and/or filters. Queries and filters
must be specified in "must", "should" or "must_not" sections. Example:

{
"index":"test",
"query":
{
"bool":
{

"must":
[

{ "match": {"_all":"keyword"} },
{ "range": { "int_col": { "gte": 14 } } }

]
}

}
}

"must"

Queries and filters specified in the "must" section must match the documents. If several fulltext queries or filters are
specified, all of them. This is the equivalent of AND queries in SphinxQL.

"should"

Queries and filters specified in the "should" section should match the documents. If some queries are specified in
"must" or "must_not", "should" queries are ignored. On the other hand, if there are no queries other than
"should", then at least one of these queries must match a document for it to match the bool query. This is the
equivalent of OR queries.

"must_not"

Queries and filters specified in the "must_not" section must not match the documents. If several queries are
specified under "must_not", the document matches if none of them match.

Example:

{
"index": "test1",
"query":
{
"bool":
{

"must":
{

(continues on next page)

9.3. /json API 139

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"match" : { "_all" : "product" }
},
"must_not":
[

{ "match": {"_all":"phone"} },
{ "range": { "price": { "gte": 500 } } }

]
}

}
}

Filters

JSON queries have two distinct entities: fulltext queries and filters. Both can be organised in a tree (using a bool
query), but for now filters work only for the root element of the query. For example:

{
"index":"test",
"query": { "range": { "price": { "lte": 11 } } }

}

Here’s an example of several filters in a bool query:

{
"index": "test1",
"query":
{
"bool":
{

"must":
[

{ "match" : { "_all" : "product" } },
{ "range": { "price": { "gte": 500, "lte": 1000 } } },

],
"must_not":
{

"range": { "revision": { "lt": 15 } }
}

}
}

}

This is a fulltext query that matches all the documents containing product in any field. These documents must have
a price greather or equal than 500 ("gte") and less or equal than 1000 ("lte"). All of these documents must not
have a revision less than 15 ("lt").

The following types of filters are supported:

Equality filters

Equality filters are the simplest filters that work with integer, float and string attributes. Example:

{
"index":"test1",
"query":
{

(continues on next page)

140 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"equals": { "price": 500 }
}

}

Range filters

Range filters match documents that have attribute values within a specified range. Example:

{
"index":"test1",
"query":
{
"range":
{

"price":
{

"gte": 500,
"lte": 1000

}
}

}
}

Range filters support the following properties:

• gte: value must be greater than or equal to

• gt: value must be greater than

• lte: value must be less than or equal to

• lt: value must be less

Geo distance filters

geo_distance filters are used to filter the documents that are within a specific distance from a geo location.

Example:

{
"index":"test",
"query":
{
"geo_distance":
{

"location_anchor": {"lat":49, "lon":15},
"location_source": {"attr_lat, attr_lon"},
"distance_type": "adaptive",
"distance":"100 km"

}
}

}

• location_anchor: specifies the pin location, in degrees. Distances are calculated from this point.

• location_source: specifies the attributes that contain latitude and longitude.

• distance_type: specifies distance calculation function. Can be either adaptive or haversine.
adaptive is faster and more precise, for more details see GEODIST(). Optional, defaults to adaptive.

9.3. /json API 141

Manticore Search Documentation, Release 2.6.1

• distance: specifies the maximum distance from the pin locations. All documents within this distance match.
The distance can be specified in various units. If no unit is specified, the distance is assumed to be in meters.
Here is a list of supported distance units:

– Meter: m or meters

– Kilometer: km or kilometers

– Centimeter: cm or centimeters

– Millimeter: mm or millimeters

– Mile: mi or miles

– Yard: yd or yards

– Feet: ft or feet

– Inch: in or inch

– Nautical mile: NM, nmi or nauticalmiles

location_anchor and location_source properties accept the following latitude/longitude formats:

• an object with lat and lon keys: { "lat":"attr_lat", "lon":"attr_lon" }

• a string of the following structure: "attr_lat,attr_lon"

• an array with the latitude and longitude in the following order: [attr_lon, attr_lat]

Latitude and longitude are specified in degrees.

Sorting

Sorting by attributes

Query results can be sorted by one or more attributes. Example:

{
"index":"test",
"query":
{
"match": { "title": "what was" }

},
"sort": ["_score", "id"]

}

"sort" specifies an array of attibutes and/or additional properties. Each element of the array can be an attribute
name or "_score" if you want to sort by match weights. In that case sort order defaults to ascending for attributes
and descending for _score.

You can also specify sort order explicitly. Example:

"sort":
[

{ "price":"asc" },
"id"

]

• asc: sort in ascending order

• desc: sort in descending order

You can also use another syntax and specify sort order via the order property:

142 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

"sort":
[

{ "gid": { "order":"desc" } }
]

Sorting by MVA attributes is also supported in JSON queries. Sorting mode can be set via the mode property. The
following modes are supported:

• min: sort by minimum value

• max: sort by maximum value

Example:

"sort":
[

{ "attr_mva": { "order":"desc", "mode":"max" } }
]

When sorting on an attribute, match weight (score) calculation is disabled by default (no ranker is used). You can
enable weight calculation by setting the track_scores property to true:

{
"index":"test",
"track_scores":true,
"query": { "match": { "title": "what was" } },
"sort": [{ "gid": { "order":"desc" } }]

}

Sorting by geo distance

Matches can be sorted by their distance from a specified location. Example:

{
"index": "test",
"query": { "match_all": {} },
"sort":
[
{

"_geo_distance":
{

"location_anchor": {"lat":41, "lon":32},
"location_source": ["attr_lon", "attr_lat"],
"distance_type": "adaptive"

}
}

]
}

location_anchor property specifies the pin location, location_source specifies the attributes that contain
latitude and longitude and distance_type selects distance computation function (optional, defaults to “arc”).

Expressions

Expressions are supported via script_fields:

9.3. /json API 143

Manticore Search Documentation, Release 2.6.1

{
"index": "test",
"query": { "match_all": {} },
"script_fields":
{
"add_all": { "script": { "inline": "(gid * 10) | crc32(title)" } },
"title_len": { "script": { "inline": "crc32(title)" } }

}
}

In this example two expressions are created: add_all and title_len. First expression calculates (gid

* 10) | crc32(title) and stores the result in the add_all attribute. Second expression calculates
crc32(title) and stores the result in the title_len attribute.

Only inline expressions are supported for now. The value of inline property (the expression to compute) has the
same syntax as SphinxQL expressions.

Text highlighting

Fulltext query search results can be highlighted on one or more fields. Field contents has to be stored in string attributes
(for now). Here’s an example:

{
"index": "test",
"query": { "match": { "content": "and first" } },
"highlight":
{
"fields":
{

"content": {},
"title": {}

}
}

}

As a result of this query, the values of string attributes called content and title are highlighted against the query
specified in query clause. Highlighted snippets are added in the highlight property of the hits array:

{
"took":1,
"timed_out": false,
"hits":
{
"total": 1,
"hits":
[

{
"_id": "1",
"_score": 1625,
"_source":
{
"gid": 1,
"title": "it was itself in this way",
"content": "first now and then at"

},
"highlight":

(continues on next page)

144 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

{
"content": ["first now and then at"],
"title": [""]

}
}

]
}

}

The following options are supported:

• fields object contains attribute names with options.

• encoder can be set to default or html. When set to html, retains html markup when highlighting. Works
similar to html_strip_mode=retain in CALL SNIPPETS.

• highlight_query makes it possible to highlight against a query other than our search query. Syntax is the
same as in the main query:

{
"index": "test",
"query": { "match": { "content": "and first" } },
"highlight":
{
"fields": { "content": {}, "title": {} },
"highlight_query": { "match": { "_all":"on and not" } }

}
}

• pre_tags and post_tags set opening and closing tags for highlighted text snippets. They work similar to
before_match and after_match options in CALL SNIPPETS. Optional, defaults are and .
Example:

"highlight":
{
"fields": { "content": {} },
"pre_tags": "before_",
"post_tags": "_after"

}

• no_match_size works similar to allow_empty in CALL SNIPPETS. If set to zero value, acts as
allow_empty=1, e.g. allows empty string to be returned as highlighting result when a snippet could not
be generated. Otherwise, the beginning of the field will be returned. Optional, default is 0. Example:

"highlight":
{
"fields": { "content": {} },
"no_match_size": 0

}

• order: if set to "score", sorts the extracted passages in order of relevance. Optional. Works similar to
weight_order in CALL SNIPPETS. Example:

"highlight":
{
"fields": { "content": {} },

(continues on next page)

9.3. /json API 145

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"order": "score"
}

• fragment_size sets maximum fragment size in symbols. Can be global or per-field. Per-field options
override global options. Optional, default is 256. Works similar to limit in CALL SNIPPETS. Example of
per-field usage:

"highlight":
{
"fields": { "content": { "fragment_size": 100 } },

}

Example of global usage:

"highlight":
{
"fields": { "content": {} },
"fragment_size": 100

}

• number_of_fragments: Limits the maximum number of fragments in a snippet. Just as
fragment_size, can be global or per-field. Optional, default is 0 (no limit). Works similar to
limit_passages in CALL SNIPPETS.

Result set format

Query result is sent as a JSON document. Example:

{
"took":10
"timed_out": false,
"hits":
{
"total": 2,
"hits":
[

{
"_id": "1",
"_score": 1,
"_source": { "gid": 11 }

},
{

"_id": "2",
"_score": 1,
"_source": { "gid": 12 }

}
]

}
}

• took: time in milliseconds it took to execute the search

• timed_out: if the query timed out or not

• hits: search results. has the following properties:

– total: total number of matching documents

146 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

– hits: an array containing matches

Query result can also include query profile information, see Query profile.

Each match in the hits array has the following properties:

• _id: match id

• _score: match weight, calculated by ranker

• _source: an array containing the attributes of this match. By default all attributes are included. However, this
behaviour can be changed, see below

You can use the _source property to select the fields you want to be included in the result set. Example:

{
"index":"test",
"_source":"attr*",
"query": { "match_all": {} }

}

You can specify the attributes which you want to include in the query result as a string ("_source": "attr*")
or as an array of strings ("_source": ["attr1", "attri*"]"). Each entry can be an attribute name or
a wildcard (*, % and ? symbols are supported).

You can also explicitly specify which attributes you want to include and which to exlude from the result set using the
includes and excludes properties:

"_source":
{

"includes": ["attr1", "attri*"],
"excludes": ["*desc*"]

}

An empty list of includes is interpreted as “include all attributes” while an empty list of excludes does not match
anything. If an attribute matches both the includes and excludes, then the excludes win.

Query profile

You can view the final transformed query tree with all normalized keywords by adding a "profile":true property:

{
"index":"test",
"profile":true,
"query":
{
"match_phrase": { "_all" : "had grown quite" }

}
}

This feature is somewhat similar to SHOW PLAN statement in SphinxQL. The result appears as a profile property
in the result set. For example:

"profile":
{

"query":
{
"type": "PHRASE",
"description": "PHRASE(AND(KEYWORD(had, querypos=1)), AND(KEYWORD(grown,

→˓querypos=2)), AND(KEYWORD(quite, querypos=3)))", (continues on next page)

9.3. /json API 147

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

"children":
[

{
"type": "AND",
"description": "AND(KEYWORD(had, querypos=1))",
"max_field_pos": 0,
"children":
[
{
"type": "KEYWORD",
"word": "had",
"querypos": 1

}
]

},
{

"type": "AND",
"description": "AND(KEYWORD(grown, querypos=2))",
"max_field_pos": 0,
"children":
[
{

"type": "KEYWORD",
"word": "grown",
"querypos": 2

}
]

},
{

"type": "AND",
"description": "AND(KEYWORD(quite, querypos=3))",
"max_field_pos": 0,
"children":
[
{

"type": "KEYWORD",
"word": "quite",
"querypos": 3

}
]

}
]

}
}

query property contains the transformed fulltext query tree. Each node contains:

• type: node type. Can be AND, OR, PHRASE, KEYWORD etc.

• description: query subtree for this node shown as a string (in SHOW PLAN format)

• children: child nodes, if any

• max_field_pos: maximum position within a field

• word: transformed keyword. Keyword nodes only.

• querypos: position of this keyword in a query. Keyword nodes only.

• excluded: keyword excluded from query. Keyword nodes only.

148 Chapter 9. HTTP API reference

Manticore Search Documentation, Release 2.6.1

• expanded: keyword added by prefix expansion. Keyword nodes only.

• field_start: keyword must occur at the very start of the field. Keyword nodes only.

• field_end: keyword must occur at the very end of the field. Keyword nodes only.

• boost: keyword IDF will be multiplied by this. Keyword nodes only.

9.3.7 json/update

This endpoint allows you to update attribute values in documents, same as SphinxQL’s UPDATE syntax. Syntax is
similar to json/insert, but this time the doc property is mandatory.

Example:

{
"index":"test",
"id":1,
"doc":
{
"gid" : 100,
"price" : 1000

}
}

The daemon will respond with a JSON object stating if the operation was successfull or not:

{
"_index": "test",
"_id": 1,
"result": "updated"

}

The id of the document that needs to be updated can be set directly using the id property (as in the example above) or
you can do an update by query and apply the update to all the documents that match the query:

{
"index":"test",
"doc":
{
"price" : 1000

},

"query":
{
"match": { "*": "apple" }

}
}

Query syntax is the same as in the json/search endpoint. Note that you can’t specify id and query at the same
time.

9.3. /json API 149

Manticore Search Documentation, Release 2.6.1

150 Chapter 9. HTTP API reference

CHAPTER 10

API reference

There is a number of native searchd client API implementations for Manticore. As of time of this writing, we of-
ficially support our own PHP, Python, and Java implementations. There also are third party free, open-source API
implementations for Perl, Ruby, and C++.

The reference API implementation is in PHP, because (we believe) Manticore is most widely used with PHP than any
other language. This reference documentation is in turn based on reference PHP API, and all code samples in this
section will be given in PHP.

However, all other APIs provide the same methods and implement the very same network protocol. Therefore the
documentation does apply to them as well. There might be minor differences as to the method naming conventions or
specific data structures used. But the provided functionality must not differ across languages.

10.1 General API functions

10.1.1 GetLastError

Prototype: function GetLastError()

Returns last error message, as a string, in human readable format. If there were no errors during the previous API call,
empty string is returned.

You should call it when any other function (such as Query()) fails (typically, the failing function returns false). The
returned string will contain the error description.

The error message is not reset by this call; so you can safely call it several times if needed.

10.1.2 GetLastWarning

Prototype: function GetLastWarning ()

Returns last warning message, as a string, in human readable format. If there were no warnings during the previous
API call, empty string is returned.

151

Manticore Search Documentation, Release 2.6.1

You should call it to verify whether your request (such as Query()) was completed but with warnings. For instance,
search query against a distributed index might complete successfully even if several remote agents timed out. In that
case, a warning message would be produced.

The warning message is not reset by this call; so you can safely call it several times if needed.

10.1.3 SetServer

Prototype: function SetServer ($host, $port)

Sets searchd host name and TCP port. All subsequent requests will use the new host and port settings. Default host
and port are ‘localhost’ and 9312, respectively.

SetRetries

Prototype: function SetRetries ($count, $delay=0)

Sets distributed retry count and delay.

On temporary failures searchd will attempt up to $count retries per agent. $delay is the delay between the
retries, in milliseconds. Retries are disabled by default. Note that this call will not make the API itself retry on
temporary failure; it only tells searchd to do so. Currently, the list of temporary failures includes all kinds of
connect() failures and maxed out (too busy) remote agents.

10.1.4 SetConnectTimeout

Prototype: function SetConnectTimeout ($timeout)

Sets the time allowed to spend connecting to the server before giving up.

Under some circumstances, the server can be delayed in responding, either due to network delays, or a query backlog.
In either instance, this allows the client application programmer some degree of control over how their program
interacts with searchd when not available, and can ensure that the client application does not fail due to exceeding
the script execution limits (especially in PHP).

In the event of a failure to connect, an appropriate error code should be returned back to the application in order for
application-level error handling to advise the user.

10.1.5 SetArrayResult

Prototype: function SetArrayResult ($arrayresult)

PHP specific. Controls matches format in the search results set (whether matches should be returned as an array or a
hash).

$arrayresult argument must be boolean. If $arrayresult is false (the default mode), matches will re-
turned in PHP hash format with document IDs as keys, and other information (weight, attributes) as values. If
$arrayresult is true, matches will be returned as a plain array with complete per-match information including
document ID.

Introduced along with GROUP BY support on MVA attributes. Group-by-MVA result sets may contain duplicate
document IDs. Thus they need to be returned as plain arrays, because hashes will only keep one entry per document
ID.

152 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

10.1.6 IsConnectError

Prototype: function IsConnectError ()

Checks whether the last error was a network error on API side, or a remote error reported by searchd. Returns true
if the last connection attempt to searchd failed on API side, false otherwise (if the error was remote, or there were no
connection attempts at all).

10.2 General query settings

10.2.1 SetSelect

Prototype: function SetSelect ($clause)

Sets the select clause, listing specific attributes to fetch, and Sorting modes to compute and fetch. Clause syntax
mimics SQL.

SetSelect() is very similar to the part of a typical SQL query between SELECT and FROM. It lets you choose what
attributes (columns) to fetch, and also what expressions over the columns to compute and fetch. A certain difference
from SQL is that expressions must always be aliased to a correct identifier (consisting of letters and digits) using ‘AS’
keyword. SQL also lets you do that but does not require to. Manticore enforces aliases so that the computation results
can always be returned under a “normal” name in the result set, used in other clauses, etc.

Everything else is basically identical to SQL. Star (‘*’) is supported. Functions are supported. Arbitrary amount of
expressions is supported. Computed expressions can be used for sorting, filtering, and grouping, just as the regular
attributes.

When using GROUP BY agregate functions (AVG(), MIN(), MAX(), SUM()) are supported.

Expression sorting (Sorting modes) and geodistance functions (SetGeoAnchor) are now internally implemented using
this computed expressions mechanism, using magic names ‘@expr’ and ‘@geodist’ respectively.

Example:

$cl->SetSelect ("*, @weight+(user_karma+ln(pageviews))*0.1 AS myweight");
$cl->SetSelect ("exp_years, salary_gbp*{$gbp_usd_rate} AS salary_usd,

IF(age>40,1,0) AS over40");
$cl->SetSelect ("*, AVG(price) AS avgprice");

10.2.2 SetLimits

Prototype: function SetLimits ($offset, $limit, $max_matches=1000, $cutoff=0)

Sets offset into server-side result set ($offset) and amount of matches to return to client starting from that offset
($limit). Can additionally control maximum server-side result set size for current query ($max_matches) and
the threshold amount of matches to stop searching at ($cutoff). All parameters must be non-negative integers.

First two parameters to SetLimits() are identical in behavior to MySQL LIMIT clause. They instruct searchd to
return at most $limit matches starting from match number $offset. The default offset and limit settings are 0
and 20, that is, to return first 20 matches.

max_matches setting controls how much matches searchd will keep in RAM while searching. All matching
documents will be normally processed, ranked, filtered, and sorted even if max_matches is set to 1. But only best
N documents are stored in memory at any given moment for performance and RAM usage reasons, and this setting
controls that N. Note that there are two places where max_matches limit is enforced. Per-query limit is controlled

10.2. General query settings 153

Manticore Search Documentation, Release 2.6.1

by this API call, but there also is per-server limit controlled by max_matches setting in the config file. To prevent
RAM usage abuse, server will not allow to set per-query limit higher than the per-server limit.

You can’t retrieve more than max_matches matches to the client application. The default limit is set to 1000.
Normally, you must not have to go over this limit. One thousand records is enough to present to the end user. And
if you’re thinking about pulling the results to application for further sorting or filtering, that would be much more
efficient if performed on Manticore side.

$cutoff setting is intended for advanced performance control. It tells searchd to forcibly stop search query once
$cutoff matches had been found and processed.

10.2.3 SetMaxQueryTime

Prototype: function SetMaxQueryTime ($max_query_time)

Sets maximum search query time, in milliseconds. Parameter must be a non-negative integer. Default value is 0 which
means “do not limit”.

Similar to $cutoff setting from SetLimits(), but limits elapsed query time instead of processed matches count. Local
search queries will be stopped once that much time has elapsed. Note that if you’re performing a search which queries
several local indexes, this limit applies to each index separately.

10.2.4 SetOverride

DEPRECATED

Prototype: function SetOverride ($attrname, $attrtype, $values)

Sets temporary (per-query) per-document attribute value overrides. Only supports scalar attributes. $values must be a
hash that maps document IDs to overridden attribute values.

Override feature lets you “temporary” update attribute values for some documents within a single query, leaving all
other queries unaffected. This might be useful for personalized data. For example, assume you’re implementing
a personalized search function that wants to boost the posts that the user’s friends recommend. Such data is not
just dynamic, but also personal; so you can’t simply put it in the index because you don’t want everyone’s searches
affected. Overrides, on the other hand, are local to a single query and invisible to everyone else. So you can, say, setup
a “friends_weight” value for every document, defaulting to 0, then temporary override it with 1 for documents 123,
456 and 789 (recommended by exactly the friends of current user), and use that value when ranking.

10.3 Full-text search query settings

10.3.1 SetFieldWeights

Prototype: function SetFieldWeights ($weights)

Binds per-field weights by name. Parameter must be a hash (associative array) mapping string field names to integer
weights.

Match ranking can be affected by per-field weights. For instance, see Search results ranking for an explanation how
phrase proximity ranking is affected. This call lets you specify what non-default weights to assign to different full-text
fields.

The weights must be positive 32-bit integers. The final weight will be a 32-bit integer too. Default weight value is 1.
Unknown field names will be silently ignored.

154 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

There is no enforced limit on the maximum weight value at the moment. However, beware that if you set it too high
you can start hitting 32-bit wraparound issues. For instance, if you set a weight of 10,000,000 and search in extended
mode, then maximum possible weight will be equal to 10 million (your weight) by 1 thousand (internal BM25 scaling
factor, see search_results_ranking) by 1 or more (phrase proximity rank). The result is at least 10 billion that does not
fit in 32 bits and will be wrapped around, producing unexpected results.

10.3.2 SetIndexWeights

Prototype: function SetIndexWeights ($weights)

Sets per-index weights, and enables weighted summing of match weights across different indexes. Parameter must be
a hash (associative array) mapping string index names to integer weights. Default is empty array that means to disable
weighting summing.

When a match with the same document ID is found in several different local indexes, by default Manticore simply
chooses the match from the index specified last in the query. This is to support searching through partially overlapping
index partitions.

However in some cases the indexes are not just partitions, and you might want to sum the weights across the indexes
instead of picking one. SetIndexWeights() lets you do that. With summing enabled, final match weight in result
set will be computed as a sum of match weight coming from the given index multiplied by respective per-index weight
specified in this call. Ie. if the document 123 is found in index A with the weight of 2, and also in index B with the
weight of 3, and you called SetIndexWeights (array ("A"=>100, "B"=>10)), the final weight
return to the client will be 2100+310 = 230.

10.3.3 SetMatchMode

DEPRECATED

Prototype: function SetMatchMode ($mode)

Sets full-text query matching mode, as described in Matching modes. Parameter must be a constant specifying one of
the known modes.

WARNING: (PHP specific) you must not take the matching mode constant name in quotes, that syntax specifies a
string and is incorrect:

$cl->SetMatchMode ("SPH_MATCH_ANY"); // INCORRECT! will not work as expected
$cl->SetMatchMode (SPH_MATCH_ANY); // correct, works OK

10.3.4 SetRankingMode

Prototype: function SetRankingMode ($ranker, $rankexpr=“”)

Sets ranking mode (aka ranker). Only available in SPH_MATCH_EXTENDED matching mode. Parameter must be a
constant specifying one of the known rankers.

By default, in the EXTENDED matching mode Manticore computes two factors which contribute to the final match
weight. The major part is a phrase proximity value between the document text and the query. The minor part is
so-called BM25 statistical function, which varies from 0 to 1 depending on the keyword frequency within document
(more occurrences yield higher weight) and within the whole index (more rare keywords yield higher weight).

However, in some cases you’d want to compute weight differently - or maybe avoid computing it at all for performance
reasons because you’re sorting the result set by something else anyway. This can be accomplished by setting the
appropriate ranking mode. The list of the modes is available in Search results ranking.

10.3. Full-text search query settings 155

Manticore Search Documentation, Release 2.6.1

$rankexpr argument lets you specify a ranking formula to use with the expression based ranker <expres-
sion_based_ranker_sphrank_expr>, that is, when $ranker is set to SPH_RANK_EXPR. In all other cases,
$rankexpr is ignored.

10.3.5 SetSortMode

Prototype: function SetSortMode ($mode, $sortby=“”)

Set matches sorting mode, as described in Sorting modes. Parameter must be a constant specifying one of the known
modes.

WARNING: (PHP specific) you must not take the matching mode constant name in quotes, that syntax specifies a
string and is incorrect:

$cl->SetSortMode ("SPH_SORT_ATTR_DESC"); // INCORRECT! will not work as expected
$cl->SetSortMode (SPH_SORT_ATTR_ASC); // correct, works OK

10.3.6 SetWeights

Prototype: function SetWeights ($weights)

Binds per-field weights in the order of appearance in the index. DEPRECATED, use SetFieldWeights() instead.

10.4 Result set filtering settings

10.4.1 SetFilter

Prototype: function SetFilter ($attribute, $values, $exclude=false)

Adds new integer values set filter.

On this call, additional new filter is added to the existing list of filters. $attribute must be a string with attribute
name. $values must be a plain array containing integer values. $exclude must be a boolean value; it controls
whether to accept the matching documents (default mode, when $exclude is false) or reject them.

Only those documents where $attribute column value stored in the index matches any of the values from
$values array will be matched (or rejected, if $exclude is true).

10.4.2 SetFilterRange

Prototype: function SetFilterRange ($attribute, $min, $max, $exclude=false)

Adds new integer range filter.

On this call, additional new filter is added to the existing list of filters. $attribute must be a string with attribute
name. $min and $max must be integers that define the acceptable attribute values range (including the boundaries).
$exclude must be a boolean value; it controls whether to accept the matching documents (default mode, when
$exclude is false) or reject them.

Only those documents where $attribute column value stored in the index is between $min and $max (including
values that are exactly equal to $min or $max) will be matched (or rejected, if $exclude is true).

156 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

10.4.3 SetFilterFloatRange

Prototype: function SetFilterFloatRange ($attribute, $min, $max, $exclude=false)

Adds new float range filter.

On this call, additional new filter is added to the existing list of filters. $attribute must be a string with attribute
name. $min and $max must be floats that define the acceptable attribute values range (including the boundaries).
$exclude must be a boolean value; it controls whether to accept the matching documents (default mode, when
$exclude is false) or reject them.

Only those documents where $attribute column value stored in the index is between $min and $max (including
values that are exactly equal to $min or $max) will be matched (or rejected, if $exclude is true).

10.4.4 SetFilterString

Prototype: function SetFilterString ($attribute, $value, $exclude=false)

Adds new string value filter.

On this call, additional new filter is added to the existing list of filters. $attribute must be a string with attribute
name. $value must be a string. $exclude must be a boolean value; it controls whether to accept the matching
documents (default mode, when $exclude is false) or reject them.

Only those documents where $attribute column value stored in the index matches string value from $value will
be matched (or rejected, if $exclude is true).

10.4.5 SetIDRange

Prototype: function SetIDRange ($min, $max)

Sets an accepted range of document IDs. Parameters must be integers. Defaults are 0 and 0; that combination means
to not limit by range.

After this call, only those records that have document ID between $min and $max (including IDs exactly equal to
$min or $max) will be matched.

10.4.6 SetGeoAnchor

Prototype: function SetGeoAnchor ($attrlat, $attrlong, $lat, $long)

Sets anchor point for and geosphere distance (geodistance) calculations, and enable them.

$attrlat and $attrlong must be strings that contain the names of latitude and longitude attributes, respectively.
$lat and $long are floats that specify anchor point latitude and longitude, in radians.

Once an anchor point is set, you can use magic @geodist attribute name in your filters and/or sorting expressions.
Manticore will compute geosphere distance between the given anchor point and a point specified by latitude and
longitude attributes from each full-text match, and attach this value to the resulting match. The latitude and longitude
values both in SetGeoAnchor and the index attribute data are expected to be in radians. The result will be returned
in meters, so geodistance value of 1000.0 means 1 km. 1 mile is approximately 1609.344 meters.

10.4. Result set filtering settings 157

Manticore Search Documentation, Release 2.6.1

10.5 GROUP BY settings

10.5.1 SetGroupBy

Prototype: function SetGroupBy ($attribute, $func, $groupsort=“@group desc”)

Sets grouping attribute, function, and groups sorting mode; and enables grouping (as described in Grouping (cluster-
ing) search results).

$attribute is a string that contains group-by attribute name. $func is a constant that chooses a function applied
to the attribute value in order to compute group-by key. $groupsort is a clause that controls how the groups will
be sorted. Its syntax is similar to that described in Sorting modes.

Grouping feature is very similar in nature to GROUP BY clause from SQL. Results produces by this function call are
going to be the same as produced by the following pseudo code:

SELECT ... GROUP BY func(attribute) ORDER BY groupsort

Note that it’s $groupsort that affects the order of matches in the final result set. Sorting mode (see SetSortMode)
affect the ordering of matches within group, ie. what match will be selected as the best one from the group. So you
can for instance order the groups by matches count and select the most relevant match within each group at the same
time.

Aggregate functions (AVG(), MIN(), MAX(), SUM()) are supported through SetSelect() API call when using GROUP
BY.

Grouping on string attributes is supported, with respect to current collation.

10.5.2 SetGroupDistinct

Prototype: function SetGroupDistinct ($attribute)

Sets attribute name for per-group distinct values count calculations. Only available for grouping queries.

$attribute is a string that contains the attribute name. For each group, all values of this attribute will be stored (as
RAM limits permit), then the amount of distinct values will be calculated and returned to the client. This feature is
similar to COUNT(DISTINCT) clause in standard SQL; so these Manticore calls:

$cl->SetGroupBy ("category", SPH_GROUPBY_ATTR, "@count desc");
$cl->SetGroupDistinct ("vendor");

can be expressed using the following SQL clauses:

SELECT id, weight, all-attributes,
COUNT(DISTINCT vendor) AS @distinct,
COUNT(*) AS @count

FROM products
GROUP BY category
ORDER BY @count DESC

In the sample pseudo code shown just above, SetGroupDistinct() call corresponds to COUNT(DISINCT
vendor) clause only. GROUP BY, ORDER BY, and COUNT(*) clauses are all an equivalent of SetGroupBy()
settings. Both queries will return one matching row for each category. In addition to indexed attributes, matches will
also contain total per-category matches count, and the count of distinct vendor IDs within each category.

158 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

10.6 Querying

10.6.1 AddQuery

Prototype: function AddQuery ($query, $index=“*“, $comment=””)

Adds additional query with current settings to multi-query batch. $query is a query string. $index is an index
name (or names) string. Additionally if provided, the contents of $comment are sent to the query log, marked in
square brackets, just before the search terms, which can be very useful for debugging. Currently, this is limited to 128
characters. Returns index to results array returned from RunQueries.

Batch queries (or multi-queries) enable searchd to perform internal optimizations if possible. They also reduce
network connection overheads and search process creation overheads in all cases. They do not result in any additional
overheads compared to simple queries. Thus, if you run several different queries from your web page, you should
always consider using multi-queries.

For instance, running the same full-text query but with different sorting or group-by settings will enable searchd to
perform expensive full-text search and ranking operation only once, but compute multiple group-by results from its
output.

This can be a big saver when you need to display not just plain search results but also some per-category counts, such
as the amount of products grouped by vendor. Without multi-query, you would have to run several queries which
perform essentially the same search and retrieve the same matches, but create result sets differently. With multi-query,
you simply pass all these queries in a single batch and Manticore optimizes the redundant full-text search internally.

AddQuery() internally saves full current settings state along with the query, and you can safely change them af-
terwards for subsequent AddQuery() calls. Already added queries will not be affected; there’s actually no way to
change them at all. Here’s an example:

$cl->SetSortMode (SPH_SORT_RELEVANCE);
$cl->AddQuery ("hello world", "documents");

$cl->SetSortMode (SPH_SORT_ATTR_DESC, "price");
$cl->AddQuery ("ipod", "products");

$cl->AddQuery ("harry potter", "books");

$results = $cl->RunQueries ();

With the code above, 1st query will search for “hello world” in “documents” index and sort results by relevance, 2nd
query will search for “ipod” in “products” index and sort results by price, and 3rd query will search for “harry potter”
in “books” index while still sorting by price. Note that 2nd SetSortMode() call does not affect the first query
(because it’s already added) but affects both other subsequent queries.

Additionally, any filters set up before an AddQuery() will fall through to subsequent queries. So, if SetFilter()
is called before the first query, the same filter will be in place for the second (and subsequent) queries batched through
AddQuery() unless you call ResetFilters() first. Alternatively, you can add additional filters as well.

This would also be true for grouping options and sorting options; no current sorting, filtering, and grouping settings
are affected by this call; so subsequent queries will reuse current query settings.

AddQuery() returns an index into an array of results that will be returned from RunQueries() call. It is simply
a sequentially increasing 0-based integer, ie. first call will return 0, second will return 1, and so on. Just a small helper
so you won’t have to track the indexes manually if you need then.

10.6. Querying 159

Manticore Search Documentation, Release 2.6.1

10.6.2 Query

Prototype: function Query ($query, $index=“*“, $comment=””)

Connects to searchd server, runs given search query with current settings, obtains and returns the result set.

$query is a query string. $index is an index name (or names) string. Returns false and sets GetLastError()
message on general error. Returns search result set on success. Additionally, the contents of $comment are sent to the
query log, marked in square brackets, just before the search terms, which can be very useful for debugging. Currently,
the comment is limited to 128 characters.

Default value for $index is "*" that means to query all local indexes. Characters allowed in index names include
Latin letters (a-z), numbers (0-9) and underscore (_); everything else is considered a separator. Note that index name
should not start with underscore character. Therefore, all of the following samples calls are valid and will search the
same two indexes:

$cl->Query ("test query", "main delta");
$cl->Query ("test query", "main;delta");
$cl->Query ("test query", "main, delta");

Index specification order matters. If document with identical IDs are found in two or more indexes, weight and attribute
values from the very last matching index will be used for sorting and returning to client (unless explicitly overridden
with SetIndexWeights()). Therefore, in the example above, matches from “delta” index will always win over matches
from “main”.

On success, Query() returns a result set that contains some of the found matches (as requested by SetLimits()) and
additional general per-query statistics. The result set is a hash (PHP specific; other languages might utilize other
structures instead of hash) with the following keys and values:

• “matches”:

• Hash which maps found document IDs to another small hash containing document weight and attribute values
(or an array of the similar small hashes if SetArrayResult() was enabled).

• “total”:

• Total amount of matches retrieved on server (ie. to the server side result set) by this query. You can retrieve up
to this amount of matches from server for this query text with current query settings.

• “total_found”:

• Total amount of matching documents in index (that were found and processed on server).

• “words”:

• Hash which maps query keywords (case-folded, stemmed, and otherwise processed) to a small hash with per-
keyword statistics (“docs”, “hits”).

• “error”:

• Query error message reported by searchd (string, human readable). Empty if there were no errors.

• “warning”:

• Query warning message reported by searchd (string, human readable). Empty if there were no warnings.

It should be noted that Query() carries out the same actions as AddQuery() and RunQueries() without the
intermediate steps; it is analogous to a single AddQuery() call, followed by a corresponding RunQueries(), then
returning the first array element of matches (from the first, and only, query.)

160 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

10.6.3 RunQueries

Prototype: function RunQueries ()

Connect to searchd, runs a batch of all queries added using AddQuery(), obtains and returns the result sets. Returns
false and sets GetLastError() message on general error (such as network I/O failure). Returns a plain array of
result sets on success.

Each result set in the returned array is exactly the same as the result set returned from Query.

Note that the batch query request itself almost always succeeds - unless there’s a network error, blocking index rotation
in progress, or another general failure which prevents the whole request from being processed.

However individual queries within the batch might very well fail. In this case their respective result sets will contain
non-empty "error" message, but no matches or query statistics. In the extreme case all queries
within the batch could fail. There still will be no general error reported, because API was able to successfully connect
to searchd, submit the batch, and receive the results - but every result set will have a specific error message.

10.6.4 ResetFilters

Prototype: function ResetFilters ()

Clears all currently set filters.

This call is only normally required when using multi-queries. You might want to set different filters for different
queries in the batch. To do that, you should call ResetFilters() and add new filters using the respective calls.

10.6.5 ResetGroupBy

Prototype: function ResetGroupBy ()

Clears all currently group-by settings, and disables group-by.

This call is only normally required when using multi-queries. You can change individual group-by settings us-
ing SetGroupBy() and SetGroupDistinct() calls, but you can not disable group-by using those calls.
ResetGroupBy() fully resets previous group-by settings and disables group-by mode in the current state, so that
subsequent AddQuery() calls can perform non-grouping searches.

10.7 Additional functionality

10.7.1 BuildExcerpts

Prototype: function BuildExcerpts ($docs, $index, $words, $opts=array())

Excerpts (snippets) builder function. Connects to searchd, asks it to generate excerpts (snippets) from given docu-
ments, and returns the results.

$docs is a plain array of strings that carry the documents’ contents. $index is an index name string. Different
settings (such as charset, morphology, wordforms) from given index will be used. $words is a string that contains
the keywords to highlight. They will be processed with respect to index settings. For instance, if English stemming
is enabled in the index, shoes will be highlighted even if keyword is shoe. Keywords can contain wildcards, that
work similarly to star-syntax available in queries. $opts is a hash which contains additional optional highlighting
parameters:

10.7. Additional functionality 161

Manticore Search Documentation, Release 2.6.1

• before_match: A string to insert before a keyword match. A %PASSAGE_ID% macro can be used in this
string. The first match of the macro is replaced with an incrementing passage number within a current snippet.
Numbering starts at 1 by default but can be overridden with start_passage_id option. In a multi-document
call, %PASSAGE_ID% would restart at every given document. Default is **.

• after_match: A string to insert after a keyword match. Starting with version 1.10-beta, a %PASSAGE_ID%
macro can be used in this string. Default is **.

• chunk_separator: A string to insert between snippet chunks (passages). Default is

• limit: Maximum snippet size, in symbols (codepoints). Integer, default is 256.

• around: How much words to pick around each matching keywords block. Integer, default is 5.

• exact_phrase: Whether to highlight exact query phrase matches only instead of individual keywords.
Boolean, default is false.

• use_boundaries: Whether to additionally break passages by phrase boundary characters, as configured in
index settings with phrase_boundary directive. Boolean, default is false.

• weight_order: Whether to sort the extracted passages in order of relevance (decreasing weight), or in order
of appearance in the document (increasing position). Boolean, default is false.

• query_mode: Whether to handle $words as a query in extended syntax, or as a bag of words (default behavior).
For instance, in query mode (one two | three four) will only highlight and include those occurrences one
two or three fourwhen the two words from each pair are adjacent to each other. In default mode, any single
occurrence of one, two, three, or four would be highlighted. Boolean, default is false.

• force_all_words: Ignores the snippet length limit until it includes all the keywords. Boolean, default is
false.

• limit_passages: Limits the maximum number of passages that can be included into the snippet. Integer,
default is 0 (no limit).

• limit_words: Limits the maximum number of words that can be included into the snippet. Note the limit
applies to any words, and not just the matched keywords to highlight. For example, if we are highlighting Mary
and a passage Mary had a little lamb is selected, then it contributes 5 words to this limit, not just 1.
Integer, default is 0 (no limit).

• start_passage_id: Specifies the starting value of %PASSAGE_ID% macro (that gets detected and ex-
panded in before_match, after_match strings). Integer, default is 1.

• load_files: Whether to handle $docs as data to extract snippets from (default behavior), or to treat it as
file names, and load data from specified files on the server side. Up to dist_threads worker threads per request
will be created to parallelize the work when this flag is enabled. Boolean, default is false. Building of the
snippets could be parallelized between remote agents. Just set the ‘dist_threads’ param in the config to the value
greater than 1, and then invoke the snippets generation over the distributed index, which contain only one(!)
local agent and several remotes. The snippets_file_prefix option is also in the game and the final filename is
calculated by concatenation of the prefix with given name. Otherwords, when snippets_file_prefix is ‘/var/data’
and filename is ‘text.txt’ the sphinx will try to generate the snippets from the file ‘/var/datatext.txt’, which is
exactly ‘/var/data’ + ‘text.txt’.

• load_files_scattered: It works only with distributed snippets generation with remote agents. The
source files for snippets could be distributed among different agents, and the main daemon will merge together
all non-erroneous results. So, if one agent of the distributed index has ‘file1.txt’, another has ‘file2.txt’ and you
call for the snippets with both these files, the sphinx will merge results from the agents together, so you will get
the snippets from both ‘file1.txt’ and ‘file2.txt’. Boolean, default is false.

If the load_files is also set, the request will return the error in case if any of the files is not available
anywhere. Otherwise (if load_files is not set) it will just return the empty strings for all absent files. The
master instance reset this flag when distributes the snippets among agents. So, for agents the absence of a file is

162 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

not critical error, but for the master it might be so. If you want to be sure that all snippets are actually created, set
both load_files_scattered and load_files. If the absence of some snippets caused by some agents
is not critical for you - set just load_files_scattered, leaving load_files not set.

• html_strip_mode: HTML stripping mode setting. Defaults to index, which means that index settings
will be used. The other values are none and strip, that forcibly skip or apply stripping irregardless of index
settings; and retain, that retains HTML markup and protects it from highlighting. The retain mode can
only be used when highlighting full documents and thus requires that no snippet size limits are set. String,
allowed values are none, strip, index, and retain.

• allow_empty: Allows empty string to be returned as highlighting result when a snippet could not be gen-
erated (no keywords match, or no passages fit the limit). By default, the beginning of original text would be
returned instead of an empty string. Boolean, default is false.

• passage_boundary: Ensures that passages do not cross a sentence, paragraph, or zone boundary (when
used with an index that has the respective indexing settings enabled). String, allowed values are sentence,
paragraph, and zone.

• emit_zones: Emits an HTML tag with an enclosing zone name before each passage. Boolean, default is
false.

Snippets extraction algorithm currently favors better passages (with closer phrase matches), and then passages with
keywords not yet in snippet. Generally, it will try to highlight the best match with the query, and it will also to highlight
all the query keywords, as made possible by the limits. In case the document does not match the query, beginning of
the document trimmed down according to the limits will be return by default. You can also return an empty snippet
instead case by setting allow_empty option to true.

Returns false on failure. Returns a plain array of strings with excerpts (snippets) on success.

10.7.2 BuildKeywords

Prototype: function BuildKeywords ($query, $index, $hits)

Extracts keywords from query using tokenizer settings for given index, optionally with per-keyword occurrence statis-
tics. Returns an array of hashes with per-keyword information.

$query is a query to extract keywords from. $index is a name of the index to get tokenizing settings and keyword
occurrence statistics from. $hits is a boolean flag that indicates whether keyword occurrence statistics are required.

Usage example:

$keywords = $cl->BuildKeywords ("this.is.my query", "test1", false);

10.7.3 EscapeString

Prototype: function EscapeString ($string)

Escapes characters that are treated as special operators by the query language parser. Returns an escaped string.

$string is a string to escape.

This function might seem redundant because it’s trivial to implement in any calling application. However, as the set
of special characters might change over time, it makes sense to have an API call that is guaranteed to escape all such
characters at all times.

Usage example:

$escaped = $cl->EscapeString ("escaping-sample@query/string");

10.7. Additional functionality 163

Manticore Search Documentation, Release 2.6.1

10.7.4 FlushAttributes

Prototype: function FlushAttributes ()

Forces searchd to flush pending attribute updates to disk, and blocks until completion. Returns a non-negative
internal flush tag on success. Returns -1 and sets an error message on error.

Attribute values updated using UpdateAttributes() API call are only kept in RAM until a so-called flush (which writes
the current, possibly updated attribute values back to disk). FlushAttributes() call lets you enforce a flush. The call
will block until searchd finishes writing the data to disk, which might take seconds or even minutes depending on
the total data size (.spa file size). All the currently updated indexes will be flushed.

Flush tag should be treated as an ever growing magic number that does not mean anything. It’s guaranteed to be
non-negative. It is guaranteed to grow over time, though not necessarily in a sequential fashion; for instance, two calls
that return 10 and then 1000 respectively are a valid situation. If two calls to FlushAttrs() return the same tag, it means
that there were no actual attribute updates in between them, and therefore current flushed state remained the same (for
all indexes).

Usage example:

$status = $cl->FlushAttributes ();
if ($status<0)

print "ERROR: " . $cl->GetLastError();

10.7.5 Status

Prototype: function Status ()

Queries searchd status, and returns an array of status variable name and value pairs.

Usage example:

$status = $cl->Status ();
foreach ($status as $row)

print join (": ", $row) . "\n";

10.7.6 UpdateAttributes

Prototype: function UpdateAttributes ($index, $attrs, $values, $mva=false, $ignorenonexistent=false)

Instantly updates given attribute values in given documents. Returns number of actually updated documents (0 or
more) on success, or -1 on failure.

$index is a name of the index (or indexes) to be updated. $attrs is a plain array with string attribute names,
listing attributes that are updated. $values is a hash where key is document ID, and value is a plain array of new
attribute values. Optional boolean parameter mva points that there is update of MVA attributes. In this case the values
must be a dict with int key (document ID) and list of lists of int values (new MVA attribute values). Optional boolean
parameter $ignorenonexistent points that the update will silently ignore any warnings about trying to update a
column which is not exists in current index schema.

$index can be either a single index name or a list, like in Query(). Unlike Query(), wildcard is not allowed and
all the indexes to update must be specified explicitly. The list of indexes can include distributed index names. Updates
on distributed indexes will be pushed to all agents.

The updates only work with docinfo=extern storage strategy. They are very fast because they’re working
fully in RAM, but they can also be made persistent: updates are saved on disk on clean searchd shutdown ini-

164 Chapter 10. API reference

Manticore Search Documentation, Release 2.6.1

tiated by SIGTERM signal. With additional restrictions, updates are also possible on MVA attributes; refer to
mva_updates_pool directive for details.

Usage example:

$cl->UpdateAttributes ("test1", array("group_id"), array(1=>array(456)));
$cl->UpdateAttributes ("products", array ("price", "amount_in_stock"),

array (1001=>array(123,5), 1002=>array(37,11), 1003=>(25,129)));

The first sample statement will update document 1 in index test1, setting group_id to 456. The second one will
update documents 1001, 1002 and 1003 in index products. For document 1001, the new price will be set to 123
and the new amount in stock to 5; for document 1002, the new price will be 37 and the new amount will be 11; etc.

10.8 Persistent connections

Persistent connections allow to use single network connection to run multiple commands that would otherwise require
reconnects.

10.8.1 Open

Prototype: function Open ()

Opens persistent connection to the server.

10.8.2 Close

Prototype: function Close ()

Closes previously opened persistent connection.

10.8. Persistent connections 165

Manticore Search Documentation, Release 2.6.1

166 Chapter 10. API reference

CHAPTER 11

Configuration reference

11.1 Common section configuration options

11.1.1 lemmatizer_base

Lemmatizer dictionaries base path. Optional, default is /usr/local/share (as in –datadir switch to ./configure script).

Our lemmatizer implementation (see morphology for a discussion of what lemmatizers are) is dictionary driven. lem-
matizer_base directive configures the base dictionary path. File names are hardcoded and specific to a given lem-
matizer; the Russian lemmatizer uses ru.pak dictionary file. The dictionaries can be obtained from the Manticore
website.

Example:

lemmatizer_base = /usr/local/share/sphinx/dicts/

11.1.2 progressive_merge

Merge Real-Time index chunks during OPTIMIZE operation from smaller to bigger. Progressive merge merger faster
and reads/write less data. Enabled by default. If disabled, chunks are merged from first to last created.

11.1.3 json_autoconv_keynames

Whether and how to auto-convert key names within JSON attributes. Known value is ‘lowercase’. Optional, default
value is unspecified (do not convert anything).

When this directive is set to ‘lowercase’, key names within JSON attributes will be automatically brought to lower
case when indexing. This conversion applies to any data source, that is, JSON attributes originating from either SQL
or XMLpipe2 sources will all be affected.

Example:

167

Manticore Search Documentation, Release 2.6.1

json_autoconv_keynames = lowercase

11.1.4 json_autoconv_numbers

Automatically detect and convert possible JSON strings that represent numbers, into numeric attributes. Optional,
default value is 0 (do not convert strings into numbers).

When this option is 1, values such as “1234” will be indexed as numbers instead of strings; if the option is 0, such
values will be indexed as strings. This conversion applies to any data source, that is, JSON attributes originating from
either SQL or XMLpipe2 sources will all be affected.

Example:

json_autoconv_numbers = 1

11.1.5 on_json_attr_error

What to do if JSON format errors are found. Optional, default value is ignore_attr (ignore errors). Applies only
to sql_attr_json attributes.

By default, JSON format errors are ignored (ignore_attr) and the indexer tool will just show a warning. Setting
this option to fail_index will rather make indexing fail at the first JSON format error.

Example:

on_json_attr_error = ignore_attr

11.1.6 plugin_dir

Trusted location for the dynamic libraries (UDFs). Optional, default is empty (no location).

Specifies the trusted directory from which the UDF libraries can be loaded. Requires workers = thread <workers> to
take effect.

Example:

plugin_dir = /usr/local/sphinx/lib

11.1.7 rlp_environment

RLP environment configuration file. Mandatory if RLP is used.

Example:

rlp_environment = /home/myuser/RLP/rlp-environment.xml

11.1.8 rlp_max_batch_docs

Maximum number of documents batched before processing them by the RLP. Optional, default is 50. This option has
effect only if morphology = rlp_chinese_batched is specified.

Example:

168 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

rlp_max_batch_docs = 100

11.1.9 rlp_max_batch_size

Maximum total size of documents batched before processing them by the RLP. Optional, default is 51200. Do not set
this value to more than 10Mb because sphinx splits large documents to 10Mb chunks before processing them by the
RLP. This option has effect only if morphology = rlp_chinese_batched is specified.

Example:

rlp_max_batch_size = 100k

11.1.10 rlp_root

Path to the RLP root folder. Mandatory if RLP is used.

Example:

rlp_root = /home/myuser/RLP

11.2 Data source configuration options

11.2.1 csvpipe_delimiter

csvpipe source fields delimiter. Optional, default value is ‘,’.

Example:

csvpipe_delimiter = ;

11.2.2 mssql_winauth

MS SQL Windows authentication flag. Boolean, optional, default value is 0 (false). Applies to mssql source type
only.

Whether to use currently logged in Windows account credentials for authentication when connecting to MS SQL
Server. Note that when running searchd as a service, account user can differ from the account you used to install
the service.

Example:

mssql_winauth = 1

11.2.3 mysql_connect_flags

MySQL client connection flags. Optional, default value is 0 (do not set any flags). Applies to mysql source type only.

This option must contain an integer value with the sum of the flags. The value will be passed to mysql_real_connect()
verbatim. The flags are enumerated in mysql_com.h include file. Flags that are especially interesting in regard to
indexing, with their respective values, are as follows:

11.2. Data source configuration options 169

http://dev.mysql.com/doc/refman/5.0/en/mysql-real-connect.html

Manticore Search Documentation, Release 2.6.1

• CLIENT_COMPRESS = 32; can use compression protocol

• CLIENT_SSL = 2048; switch to SSL after handshake

• CLIENT_SECURE_CONNECTION = 32768; new 4.1 authentication

For instance, you can specify 2080 (2048+32) to use both compression and SSL, or 32768 to use new authentication
only. Initially, this option was introduced to be able to use compression when the indexer and mysqld are on
different hosts. Compression on 1 Gbps links is most likely to hurt indexing time though it reduces network traffic, both
in theory and in practice. However, enabling compression on 100 Mbps links may improve indexing time significantly
(upto 20-30% of the total indexing time improvement was reported). Your mileage may vary.

Example:

mysql_connect_flags = 32 # enable compression

11.2.4 mysql_ssl_cert, mysql_ssl_key, mysql_ssl_ca

SSL certificate settings to use for connecting to MySQL server. Optional, default values are empty strings (do not use
SSL). Applies to mysql source type only.

These directives let you set up secure SSL connection between indexer and MySQL. The details on creating the
certificates and setting up MySQL server can be found in MySQL documentation.

Example:

mysql_ssl_cert = /etc/ssl/client-cert.pem
mysql_ssl_key = /etc/ssl/client-key.pem
mysql_ssl_ca = /etc/ssl/cacert.pem

11.2.5 odbc_dsn

ODBC DSN to connect to. Mandatory, no default value. Applies to odbc source type only.

ODBC DSN (Data Source Name) specifies the credentials (host, user, password, etc) to use when connecting to ODBC
data source. The format depends on specific ODBC driver used.

Example:

odbc_dsn = Driver={Oracle ODBC Driver};Dbq=myDBName;Uid=myUsername;Pwd=myPassword

11.2.6 sql_attr_bigint

64-bit signed integer attribute declaration. Multi-value (there might be multiple attributes declared), optional. Applies
to SQL source types (mysql, pgsql, mssql) only. Note that unlike sql_attr_uint, these values are signed.

Example:

sql_attr_bigint = my_bigint_id

11.2.7 sql_attr_bool

Boolean attribute declaration. Multi-value (there might be multiple attributes declared), optional. Applies to SQL
source types (mysql, pgsql, mssql) only. Equivalent to sql_attr_uint declaration with a bit count of 1.

170 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Example:

sql_attr_bool = is_deleted # will be packed to 1 bit

11.2.8 sql_attr_float

Floating point attribute declaration. Multi-value (there might be multiple attributes declared), optional. Applies to
SQL source types (mysql, pgsql, mssql) only.

The values will be stored in single precision, 32-bit IEEE 754 format. Represented range is approximately from 1e-38
to 1e+38. The amount of decimal digits that can be stored precisely is approximately 7. One important usage of the
float attributes is storing latitude and longitude values (in radians), for further usage in query-time geosphere distance
calculations.

Example:

sql_attr_float = lat_radians
sql_attr_float = long_radians

11.2.9 sql_attr_json

JSON attribute declaration. Multi-value (ie. there may be more than one such attribute declared), optional. Applies to
SQL source types (mysql, pgsql, mssql) only.

When indexing JSON attributes, Manticore expects a text field with JSON formatted data. JSON attributes supports
arbitrary JSON data with no limitation in nested levels or types.

{
"id": 1,
"gid": 2,
"title": "some title",
"tags": [

"tag1",
"tag2",
"tag3"
{

"one": "two",
"three": [4, 5]

}
]

}

These attributes allow Manticore to work with documents without a fixed set of attribute columns. When you filter on
a key of a JSON attribute, documents that don’t include the key will simply be ignored.

Example:

sql_attr_json = properties

11.2.10 sql_attr_multi

Multi-valued attribute (MVA) declaration. Multi-value (ie. there may be more than one such attribute declared),
optional. Applies to SQL source types (mysql, pgsql, mssql) only.

11.2. Data source configuration options 171

Manticore Search Documentation, Release 2.6.1

Plain attributes only allow to attach 1 value per each document. However, there are cases (such as tags or categories)
when it is desired to attach multiple values of the same attribute and be able to apply filtering or grouping to value
lists.

The declaration format is as follows (backslashes are for clarity only; everything can be declared in a single line as
well):

sql_attr_multi = ATTR-TYPE ATTR-NAME 'from' SOURCE-TYPE \
[;QUERY] \
[;RANGED-QUERY]

where

• ATTR-TYPE is ‘uint’, ‘bigint’ or ‘timestamp’

• SOURCE-TYPE is ‘field’, ‘query’, ‘ranged-query’, or ‘ranged-main-query’

• QUERY is SQL query used to fetch all (docid, attrvalue) pairs

• RANGED-QUERY is SQL query used to fetch min and max ID values, similar to ‘sql_query_range’ (used with
‘ranged-query’ SOURCE-TYPE)

if using ‘ranged-main-query’ SOURCE-TYPE then omit the RANGED-QUERY and it will automatically use the same
query from ‘sql_query_range’ (useful option in complex inheritance setups to save having to manually duplicate the
same query many times)

Example:

sql_attr_multi = uint tag from query; SELECT id, tag FROM tags
sql_attr_multi = bigint tag from ranged-query; \

SELECT id, tag FROM tags WHERE id>=$start AND id<=$end; \
SELECT MIN(id), MAX(id) FROM tags

11.2.11 sql_attr_string

String attribute declaration. Multi-value (ie. there may be more than one such attribute declared), optional. Applies to
SQL source types (mysql, pgsql, mssql) only.

String attributes can store arbitrary strings attached to every document. There’s a fixed size limit of 4 MB per value.
Also, searchd will currently cache all the values in RAM, which is an additional implicit limit.

String attributes can be used for sorting and grouping(ORDER BY, GROUP BY, WITHIN GROUP ORDER BY).
Note that attributes declared using sql_attr_string will not be full-text indexed; you can use sql_field_string
directive for that.

Example:

sql_attr_string = title # will be stored but will not be indexed

11.2.12 sql_attr_timestamp

UNIX timestamp attribute declaration. Multi-value (there might be multiple attributes declared), optional. Applies to
SQL source types (mysql, pgsql, mssql) only.

Timestamps can store date and time in the range of Jan 01, 1970 to Jan 19, 2038 with a precision of one second. The
expected column value should be a timestamp in UNIX format, ie. 32-bit unsigned integer number of seconds elapsed
since midnight, January 01, 1970, GMT. Timestamps are internally stored and handled as integers everywhere. But in

172 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

addition to working with timestamps as integers, it’s also legal to use them along with different date-based functions,
such as time segments sorting mode, or day/week/month/year extraction for GROUP BY.

Note that DATE or DATETIME column types in MySQL can not be directly used as timestamp attributes in Manticore;
you need to explicitly convert such columns using UNIX_TIMESTAMP function (if data is in range).

Note timestamps can not represent dates before January 01, 1970, and UNIX_TIMESTAMP() in MySQL will not
return anything expected. If you only needs to work with dates, not times, consider TO_DAYS() function in MySQL
instead.

Example:

sql_query = ... UNIX_TIMESTAMP(added_datetime) AS added_ts ...
sql_attr_timestamp = added_ts

11.2.13 sql_attr_uint

Unsigned integer attribute declaration. Multi-value (there might be multiple attributes declared), optional. Applies to
SQL source types (mysql, pgsql, mssql) only.

The column value should fit into 32-bit unsigned integer range. Values outside this range will be accepted but wrapped
around. For instance, -1 will be wrapped around to 2^32-1 or 4,294,967,295.

You can specify bit count for integer attributes by appending ‘:BITCOUNT’ to attribute name (see example below).
Attributes with less than default 32-bit size, or bitfields, perform slower. But they require less RAM when using extern
storage: such bitfields are packed together in 32-bit chunks in .spa attribute data file. Bit size settings are ignored if
using inline storage.

Example:

sql_attr_uint = group_id
sql_attr_uint = forum_id:9 # 9 bits for forum_id

11.2.14 sql_column_buffers

Per-column buffer sizes. Optional, default is empty (deduce the sizes automatically). Applies to odbc, mssql source
types only.

ODBC and MS SQL drivers sometimes can not return the maximum actual column size to be expected. For instance,
NVARCHAR(MAX) columns always report their length as 2147483647 bytes to indexer even though the actually
used length is likely considerably less. However, the receiving buffers still need to be allocated upfront, and their sizes
have to be determined. When the driver does not report the column length at all, Manticore allocates default 1 KB
buffers for each non-char column, and 1 MB buffers for each char column. Driver-reported column length also gets
clamped by an upper limit of 8 MB, so in case the driver reports (almost) a 2 GB column length, it will be clamped
and a 8 MB buffer will be allocated instead for that column. These hard-coded limits can be overridden using the
sql_column_buffers directive, either in order to save memory on actually shorter columns, or overcome the 8
MB limit on actually longer columns. The directive values must be a comma-separated lists of selected column names
and sizes:

sql_column_buffers = <colname>=<size>[K|M] [, ...]

Example:

sql_query = SELECT id, mytitle, mycontent FROM documents
sql_column_buffers = mytitle=64K, mycontent=10M

11.2. Data source configuration options 173

Manticore Search Documentation, Release 2.6.1

11.2.15 sql_db

SQL database (in MySQL terms) to use after the connection and perform further queries within. Mandatory, no default
value. Applies to SQL source types (mysql, pgsql, mssql) only.

Example:

sql_db = test

11.2.16 sql_field_string

Combined string attribute and full-text field declaration. Multi-value (ie. there may be more than one such attribute
declared), optional. Applies to SQL source types (mysql, pgsql, mssql) only.

sql_attr_string only stores the column value but does not full-text index it. In some cases it might be desired to both
full-text index the column and store it as attribute. sql_field_string lets you do exactly that. Both the field and
the attribute will be named the same.

Example:

sql_field_string = title # will be both indexed and stored

11.2.17 sql_file_field

File based field declaration. Applies to SQL source types (mysql, pgsql, mssql) only. Introduced in version
1.10-beta.

This directive makes indexer interpret field contents as a file name, and load and index the referred file. Files larger
than max_file_field_buffer in size are skipped. Any errors during the file loading (IO errors, missed limits, etc) will be
reported as indexing warnings and will not early terminate the indexing. No content will be indexed for such files.

Example:

sql_file_field = my_file_path # load and index files referred to by my_file_path

11.2.18 sql_host

SQL server host to connect to. Mandatory, no default value. Applies to SQL source types (mysql, pgsql, mssql)
only.

In the simplest case when Manticore resides on the same host with your MySQL or PostgreSQL installation, you
would simply specify “localhost”. Note that MySQL client library chooses whether to connect over TCP/IP or over
UNIX socket based on the host name. Specifically “localhost” will force it to use UNIX socket (this is the default and
generally recommended mode) and “127.0.0.1” will force TCP/IP usage. Refer to MySQL manual for more details.

Example:

sql_host = localhost

11.2.19 sql_joined_field

Joined/payload field fetch query. Multi-value, optional, default is empty list of queries. Applies to SQL source types
(mysql, pgsql, mssql) only.

174 Chapter 11. Configuration reference

http://dev.mysql.com/doc/refman/5.0/en/mysql-real-connect.html

Manticore Search Documentation, Release 2.6.1

sql_joined_field lets you use two different features: joined fields, and payloads (payload fields). It’s syntax is
as follows:

sql_joined_field = FIELD-NAME 'from' ('query' | 'payload-query' \
| 'ranged-query'); QUERY [; RANGE-QUERY]

where

• FIELD-NAME is a joined/payload field name;

• QUERY is an SQL query that must fetch values to index.

• RANGE-QUERY is an optional SQL query that fetches a range of values to index.

Joined fields let you avoid JOIN and/or GROUP_CONCAT statements in the main document fetch query (sql_query).
This can be useful when SQL-side JOIN is slow, or needs to be offloaded on Manticore side, or simply to emulate
MySQL-specific GROUP_CONCAT functionality in case your database server does not support it.

The query must return exactly 2 columns: document ID, and text to append to a joined field. Document IDs can be
duplicate, but they must be in ascending order. All the text rows fetched for a given ID will be concatenated together,
and the concatenation result will be indexed as the entire contents of a joined field. Rows will be concatenated in the
order returned from the query, and separating whitespace will be inserted between them. For instance, if joined field
query returns the following rows:

(1, 'red')
(1, 'right')
(1, 'hand')
(2, 'mysql')
(2, 'sphinx')

then the indexing results would be equivalent to that of adding a new text field with a value of ‘red right hand’ to
document 1 and ‘mysql sphinx’ to document 2.

Joined fields are only indexed differently. There are no other differences between joined fields and regular text fields.

When a single query is not efficient enough or does not work because of the database driver limitations, ranged
queries can be used. It works similar to the ranged queries in the main indexing loop, see Ranged queries. The range
will be queried for and fetched upfront once, then multiple queries with different $start and $end substitutions
will be run to fetch the actual data.

Payloads let you create a special field in which, instead of keyword positions, so-called user payloads are stored.
Payloads are custom integer values attached to every keyword. They can then be used in search time to affect the
ranking.

The payload query must return exactly 3 columns: document ID; keyword; and integer payload value. Document IDs
can be duplicate, but they must be in ascending order. Payloads must be unsigned integers within 24-bit range, ie.
from 0 to 16777215. For reference, payloads are currently internally stored as in-field keyword positions, but that is
not guaranteed and might change in the future.

Currently, the only method to account for payloads is to use SPH_RANK_PROXIMITY_BM25 ranker. On indexes
with payload fields, it will automatically switch to a variant that matches keywords in those fields, computes a sum of
matched payloads multiplied by field weights, and adds that sum to the final rank.

Example:

sql_joined_field = \
tagstext from query; \
SELECT docid, CONCAT('tag',tagid) FROM tags ORDER BY docid ASC

sql_joined_field = bigint tag from ranged-query; \

(continues on next page)

11.2. Data source configuration options 175

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

SELECT id, tag FROM tags WHERE id>=$start AND id<=$end ORDER BY id ASC; \
SELECT MIN(id), MAX(id) FROM tags

11.2.20 sql_pass

SQL user password to use when connecting to sql_host. Mandatory, no default value. Applies to SQL source types
(mysql, pgsql, mssql) only.

Example:

sql_pass = mysecretpassword

11.2.21 sql_port

SQL server IP port to connect to. Optional, default is 3306 for mysql source type and 5432 for pgsql type. Applies
to SQL source types (mysql, pgsql, mssql) only. Note that it depends on sql_host setting whether this value will
actually be used.

Example:

sql_port = 3306

11.2.22 sql_query_killlist

Kill-list query. Optional, default is empty (no query). Applies to SQL source types (mysql, pgsql, mssql) only.

This query is expected to return a number of 1-column rows, each containing just the document ID. The returned
document IDs are stored within an index. Kill-list for a given index suppresses results from other indexes, depending
on index order in the query. The intended use is to help implement deletions and updates on existing indexes without
rebuilding (actually even touching them), and especially to fight phantom results problem.

Let us dissect an example. Assume we have two indexes, ‘main’ and ‘delta’. Assume that documents 2, 3, and 5 were
deleted since last reindex of ‘main’, and documents 7 and 11 were updated (ie. their text contents were changed).
Assume that a keyword ‘test’ occurred in all these mentioned documents when we were indexing ‘main’; still occurs
in document 7 as we index ‘delta’; but does not occur in document 11 any more. We now reindex delta and then search
through both these indexes in proper (least to most recent) order:

$res = $cl->Query ("test", "main delta");

First, we need to properly handle deletions. The result set should not contain documents 2, 3, or 5. Second, we also
need to avoid phantom results. Unless we do something about it, document 11 will appear in search results! It will be
found in ‘main’ (but not ‘delta’). And it will make it to the final result set unless something stops it.

Kill-list, or K-list for short, is that something. Kill-list attached to ‘delta’ will suppress the specified rows from all the
preceding indexes, in this case just ‘main’. So to get the expected results, we should put all the updated and deleted
document IDs into it.

Note that in the distributed index setup, K-lists are local to every node in the cluster. They are not get transmitted
over the network when sending queries. (Because that might be too much of an impact when the K-list is huge.) You
will need to setup a separate per-server K-lists in that case.

Example:

176 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

sql_query_killlist = \
SELECT id FROM documents WHERE updated_ts>=@last_reindex UNION \
SELECT id FROM documents_deleted WHERE deleted_ts>=@last_reindex

11.2.23 sql_query_post_index

Post-index query. Optional, default value is empty. Applies to SQL source types (mysql, pgsql, mssql) only.

This query is executed when indexing is fully and successfully completed. If this query produces errors, they are
reported as warnings, but indexing is not terminated. It’s result set is ignored. $maxid macro can be used in its text;
it will be expanded to maximum document ID which was actually fetched from the database during indexing. If no
documents were indexed, $maxid will be expanded to 0.

Example:

sql_query_post_index = REPLACE INTO counters (id, val) \
VALUES ('max_indexed_id', $maxid)

11.2.24 sql_query_post

Post-fetch query. Optional, default value is empty. Applies to SQL source types (mysql, pgsql, mssql) only.

This query is executed immediately after sql_query completes successfully. When post-fetch query produces errors,
they are reported as warnings, but indexing is not terminated. It’s result set is ignored. Note that indexing is not
yet completed at the point when this query gets executed, and further indexing still may fail. Therefore, any perma-
nent updates should not be done from here. For instance, updates on helper table that permanently change the last
successfully indexed ID should not be run from post-fetch query; they should be run from post-index query instead.

Example:

sql_query_post = DROP TABLE my_tmp_table

11.2.25 sql_query_pre

Pre-fetch query, or pre-query. Multi-value, optional, default is empty list of queries. Applies to SQL source types
(mysql, pgsql, mssql) only.

Multi-value means that you can specify several pre-queries. They are executed before the main fetch query, and they
will be executed exactly in order of appearance in the configuration file. Pre-query results are ignored.

Pre-queries are useful in a lot of ways. They are used to setup encoding, mark records that are going to be indexed,
update internal counters, set various per-connection SQL server options and variables, and so on.

Perhaps the most frequent pre-query usage is to specify the encoding that the server will use for the rows it returns.
Note that Manticore accepts only UTF-8 texts. Two MySQL specific examples of setting the encoding are:

sql_query_pre = SET CHARACTER_SET_RESULTS=utf8
sql_query_pre = SET NAMES utf8

Also specific to MySQL sources, it is useful to disable query cache (for indexer connection only) in pre-query, because
indexing queries are not going to be re-run frequently anyway, and there’s no sense in caching their results. That could
be achieved with:

11.2. Data source configuration options 177

Manticore Search Documentation, Release 2.6.1

sql_query_pre = SET SESSION query_cache_type=OFF

Example:

sql_query_pre = SET NAMES utf8
sql_query_pre = SET SESSION query_cache_type=OFF

11.2.26 sql_query_range

Range query setup. Optional, default is empty. Applies to SQL source types (mysql, pgsql, mssql) only.

Setting this option enables ranged document fetch queries (see Ranged queries). Ranged queries are useful to avoid
notorious MyISAM table locks when indexing lots of data. (They also help with other less notorious issues, such
as reduced performance caused by big result sets, or additional resources consumed by InnoDB to serialize big read
transactions.)

The query specified in this option must fetch min and max document IDs that will be used as range boundaries. It
must return exactly two integer fields, min ID first and max ID second; the field names are ignored.

When ranged queries are enabled, sql_query will be required to contain $start and $end macros (because it
obviously would be a mistake to index the whole table many times over). Note that the intervals specified by
$start..$end will not overlap, so you should not remove document IDs that are exactly equal to $start or $end
from your query. The example in Ranged queries) illustrates that; note how it uses greater-or-equal and less-or-equal
comparisons.

Example:

sql_query_range = SELECT MIN(id),MAX(id) FROM documents

11.2.27 sql_query

Main document fetch query. Mandatory, no default value. Applies to SQL source types (mysql, pgsql, mssql)
only.

There can be only one main query. This is the query which is used to retrieve documents from SQL server. You
can specify up to 32 full-text fields (formally, upto SPH_MAX_FIELDS from sphinx.h), and an arbitrary amount of
attributes. All of the columns that are neither document ID (the first one) nor attributes will be full-text indexed.

Document ID MUST be the very first field, and it MUST BE UNIQUE UNSIGNED POSITIVE (NON-ZERO,
NON-NEGATIVE) INTEGER NUMBER.

Example:

sql_query = \
SELECT id, group_id, UNIX_TIMESTAMP(date_added) AS date_added, \
title, content \
FROM documents

11.2.28 sql_ranged_throttle

Ranged query throttling period, in milliseconds. Optional, default is 0 (no throttling). Applies to SQL source types
(mysql, pgsql, mssql) only.

178 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Throttling can be useful when indexer imposes too much load on the database server. It causes the indexer to sleep for
given amount of milliseconds once per each ranged query step. This sleep is unconditional, and is performed before
the fetch query.

Example:

sql_ranged_throttle = 1000 # sleep for 1 sec before each query step

11.2.29 sql_range_step

Range query step. Optional, default is 1024. Applies to SQL source types (mysql, pgsql, mssql) only.

Only used when Ranged queries are enabled. The full document IDs interval fetched by sql_query_range will be
walked in this big steps. For example, if min and max IDs fetched are 12 and 3456 respectively, and the step is 1000,
indexer will call sql_query several times with the following substitutions:

• $start=12, $end=1011

• $start=1012, $end=2011

• $start=2012, $end=3011

• $start=3012, $end=3456

Example:

sql_range_step = 1000

11.2.30 sql_sock

UNIX socket name to connect to for local SQL servers. Optional, default value is empty (use client library default
settings). Applies to SQL source types (mysql, pgsql, mssql) only.

On Linux, it would typically be /var/lib/mysql/mysql.sock. On FreeBSD, it would typically be /tmp/
mysql.sock. Note that it depends on sql_host setting whether this value will actually be used.

Example:

sql_sock = /tmp/mysql.sock

11.2.31 sql_user

SQL user to use when connecting to sql_host. Mandatory, no default value. Applies to SQL source types (mysql,
pgsql, mssql) only.

Example:

sql_user = test

11.2.32 type

Data source type. Mandatory, no default value. Known types are mysql, pgsql, mssql, xmlpipe2, tsvpipe,
csvpipe and odbc.

11.2. Data source configuration options 179

Manticore Search Documentation, Release 2.6.1

All other per-source options depend on source type selected by this option. Names of the options used for SQL sources
(ie. MySQL, PostgreSQL, MS SQL) start with sql_; names of the ones used for xmlpipe2 or tsvpipe, csvpipe start
with xmlpipe_ and tsvpipe_, csvpipe_ correspondingly. All source types are conditional; they might or might
not be supported depending on your build settings, installed client libraries, etc. mssql type is currently only available
on Windows. odbc type is available both on Windows natively and on Linux through UnixODBC library.

Example:

type = mysql

11.2.33 unpack_mysqlcompress_maxsize

Buffer size for UNCOMPRESS()ed data. Optional, default value is 16M.

When using unpack_mysqlcompress, due to implementation intricacies it is not possible to deduce the required buffer
size from the compressed data. So the buffer must be preallocated in advance, and unpacked data can not go over the
buffer size. This option lets you control the buffer size, both to limit indexer memory use, and to enable unpacking
of really long data fields if necessary.

Example:

unpack_mysqlcompress_maxsize = 1M

11.2.34 unpack_mysqlcompress

Columns to unpack using MySQL UNCOMPRESS() algorithm. Multi-value, optional, default value is empty list of
columns. Applies to SQL source types (mysql, pgsql, mssql) only.

Columns specified using this directive will be unpacked by indexer using modified zlib algorithm used by MySQL
COMPRESS() and UNCOMPRESS() functions. When indexing on a different box than the database, this lets you
offload the database, and save on network traffic. The feature is only available if zlib and zlib-devel were both available
during build time.

Example:

unpack_mysqlcompress = body_compressed
unpack_mysqlcompress = description_compressed

11.2.35 unpack_zlib

Columns to unpack using zlib (aka deflate, aka gunzip). Multi-value, optional, default value is empty list of columns.
Applies to SQL source types (mysql, pgsql, mssql) only.

Columns specified using this directive will be unpacked by indexer using standard zlib algorithm (called deflate and
also implemented by gunzip). When indexing on a different box than the database, this lets you offload the database,
and save on network traffic. The feature is only available if zlib and zlib-devel were both available during build time.

Example:

unpack_zlib = col1
unpack_zlib = col2

180 Chapter 11. Configuration reference

http://www.unixodbc.org/

Manticore Search Documentation, Release 2.6.1

11.2.36 xmlpipe_attr_bigint

xmlpipe signed 64-bit integer attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only.
Syntax fully matches that of sql_attr_bigint.

Example:

xmlpipe_attr_bigint = my_bigint_id

11.2.37 xmlpipe_attr_bool

xmlpipe boolean attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Syntax fully
matches that of sql_attr_bool.

Example:

xmlpipe_attr_bool = is_deleted # will be packed to 1 bit

11.2.38 xmlpipe_attr_float

xmlpipe floating point attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Syntax
fully matches that of sql_attr_float.

Example:

xmlpipe_attr_float = lat_radians
xmlpipe_attr_float = long_radians

11.2.39 xmlpipe_attr_json

JSON attribute declaration. Multi-value (ie. there may be more than one such attribute declared), optional.

This directive is used to declare that the contents of a given XML tag are to be treated as a JSON document and stored
into a Manticore index for later use. Refer to sql_attr_json for more details on the JSON attributes.

Example:

xmlpipe_attr_json = properties

11.2.40 xmlpipe_attr_multi_64

xmlpipe MVA attribute declaration. Declares the BIGINT (signed 64-bit integer) MVA attribute. Multi-value, optional.
Applies to xmlpipe2 source type only.

This setting declares an MVA attribute tag in xmlpipe2 stream. The contents of the specified tag will be parsed and
a list of integers that will constitute the MVA will be extracted, similar to how sql_attr_multi parses SQL column
contents when ‘field’ MVA source type is specified.

Example:

xmlpipe_attr_multi_64 = taglist

11.2. Data source configuration options 181

Manticore Search Documentation, Release 2.6.1

11.2.41 xmlpipe_attr_multi

xmlpipe MVA attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only.

This setting declares an MVA attribute tag in xmlpipe2 stream. The contents of the specified tag will be parsed and
a list of integers that will constitute the MVA will be extracted, similar to how sql_attr_multi parses SQL column
contents when ‘field’ MVA source type is specified.

Example:

xmlpipe_attr_multi = taglist

11.2.42 xmlpipe_attr_string

xmlpipe string declaration. Multi-value, optional. Applies to xmlpipe2 source type only.

This setting declares a string attribute tag in xmlpipe2 stream. The contents of the specified tag will be parsed and
stored as a string value.

Example:

xmlpipe_attr_string = subject

11.2.43 xmlpipe_attr_timestamp

xmlpipe UNIX timestamp attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Syntax
fully matches that of sql_attr_timestamp.

Example:

xmlpipe_attr_timestamp = published

11.2.44 xmlpipe_attr_uint

xmlpipe integer attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Syntax fully
matches that of sql_attr_uint.

Example:

xmlpipe_attr_uint = author_id

11.2.45 xmlpipe_command

Shell command that invokes xmlpipe2 stream producer. Mandatory. Applies to xmlpipe2 source types only.

Specifies a command that will be executed and which output will be parsed for documents. Refer to xmlpipe2 data
source for specific format description.

Example:

xmlpipe_command = cat /home/sphinx/test.xml

182 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.2.46 xmlpipe_field

xmlpipe field declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Refer to xmlpipe2 data
source.

Example:

xmlpipe_field = subject
xmlpipe_field = content

11.2.47 xmlpipe_field_string

xmlpipe field and string attribute declaration. Multi-value, optional. Applies to xmlpipe2 source type only. Refer to
xmlpipe2 data source.

Makes the specified XML element indexed as both a full-text field and a string attribute. Equivalent to <sphinx:field
name=“field” attr=“string”/> declaration within the XML file.

Example:

xmlpipe_field_string = subject

11.2.48 xmlpipe_fixup_utf8

Perform Manticore-side UTF-8 validation and filtering to prevent XML parser from choking on non-UTF-8 docu-
ments. Optional, default is 0. Applies to xmlpipe2 source type only.

Under certain occasions it might be hard or even impossible to guarantee that the incoming XMLpipe2 document
bodies are in perfectly valid and conforming UTF-8 encoding. For instance, documents with national single-byte
encodings could sneak into the stream. libexpat XML parser is fragile, meaning that it will stop processing in such
cases. UTF8 fixup feature lets you avoid that. When fixup is enabled, Manticore will preprocess the incoming stream
before passing it to the XML parser and replace invalid UTF-8 sequences with spaces.

Example:

xmlpipe_fixup_utf8 = 1

11.3 Index configuration options

11.3.1 agent_blackhole

Remote blackhole agent declaration in the distributed index. Multi-value, optional, default is empty.

agent_blackhole lets you fire-and-forget queries to remote agents. That is useful for debugging (or just testing)
production clusters: you can setup a separate debugging/testing searchd instance, and forward the requests to this
instance from your production master (aggregator) instance without interfering with production work. Master searchd
will attempt to connect and query blackhole agent normally, but it will neither wait nor process any responses. Also,
all network errors on blackhole agents will be ignored. The value format is completely identical to regular agent
directive.

Example:

11.3. Index configuration options 183

Manticore Search Documentation, Release 2.6.1

agent_blackhole = testbox:9312:testindex1,testindex2

11.3.2 agent_connect_timeout

Remote agent connection timeout, in milliseconds. Optional, default is 1000 (ie. 1 second).

When connecting to remote agents, searchd will wait at most this much time for connect() call to complete success-
fully. If the timeout is reached but connect() does not complete, and retries are enabled, retry will be initiated.

Example:

agent_connect_timeout = 300

11.3.3 agent_persistent

Persistently connected remote agent declaration. Multi-value, optional, default is empty.

agent_persistent directive syntax matches that of the agent directive. The only difference is that the master will
not open a new connection to the agent for every query and then close it. Rather, it will keep a connection open and
attempt to reuse for the subsequent queries. The maximal number of such persistent connections per one agent host is
limited by persistent_connections_limit option of searchd section.

Note, that you have to set the last one in something greater than 0 if you want to use persistent agent connections.
Otherwise - when persistent_connections_limit is not defined, it assumes the zero num of persistent connections, and
‘agent_persistent’ acts exactly as simple ‘agent’.

Persistent master-agent connections reduce TCP port pressure, and save on connection handshakes. As of time of
this writing, they are supported only in workers=threads and workers=threadpool mode. In other modes, simple non-
persistent connections (i.e., one connection per operation) will be used, and a warning will show up in the console.

Example:

agent_persistent = remotebox:9312:index2

11.3.4 agent_query_timeout

Remote agent query timeout, in milliseconds. Optional, default is 3000 (ie. 3 seconds).

After connection, searchd will wait at most this much time for remote queries to complete. This timeout is fully
separate from connection timeout; so the maximum possible delay caused by a remote agent equals to the sum of
agent_connection_timeout and agent_query_timeout. Queries will not be retried if this timeout is
reached; a warning will be produced instead.

Example:

agent_query_timeout = 10000 # our query can be long, allow up to 10 sec

11.3.5 agent_retry_count

Integer, specifies how many times manticore will try to connect and query remote agents in distributed index before
reporting fatal query error. It works the same as agent_retry_count in searchd section, but define the value for concrete
index. See also mirror_retry_count option.

184 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.3.6 agent

Remote agent declaration in the distributed index. Multi-value, optional, default is empty.

agent directive declares remote agents that are searched every time when the enclosing distributed index is searched.
The agents are, essentially, pointers to networked indexes. The value specifies address, and also can additionally
specify multiple alternatives (agent mirrors) for either the address only, or the address and index list:

agent = address1 [| address2 [...]][:index-list]
agent = address1[:index-list [| address2[:index-list [...]]]]

In both cases the address specification must be one of the following:

address = hostname[:port] # eg. server2:9312
address = /absolute/unix/socket/path # eg. /var/run/sphinx2.sock

Where hostname is the remote host name, port is the remote TCP port number, index-list is a comma-
separated list of index names, and square braces [] designate an optional clause.

When index name is omited, it is assumed the same index as the one where this line is defined. I.e. when defining
agents for distributed index ‘mycoolindex’ you can just point the address, and it is assumed to calll ‘mycoolindex’
index on agent’s endpoints.

When port number is omited, it is assumed to be default SphinxQL IANA port (9312). However when portnumber is
pointed, but invalid (say, port 70000), it will fail (skip) such agent.

In other words, you can point every single agent to one or more remote indexes, residing on one or more networked
servers. There are absolutely no restrictions on the pointers. To point out a couple important things, the host can
be localhost, and the remote index can be a distributed index in turn, all that is legal. That enables a bunch of very
different usage modes:

• sharding over multiple agent servers, and creating an arbitrary cluster topology;

• sharding over multiple agent servers, mirrored for HA/LB (High Availability and Load Balancing) purposes;

• sharding within localhost, to utilize multiple cores (however, it is simpler just to use multiple local indexes and
dist_threads directive instead);

All agents are searched in parallel. An index list is passed verbatim to the remote agent. How exactly that list is
searched within the agent (ie. sequentially or in parallel too) depends solely on the agent configuration (ie. dist_threads
directive). Master has no remote control over that.

The value can additionally enumerate per agent options such as:

• ha_strategy - random, roundrobin, nodeads, noerrors (replaces index ha_strategy for particular agent)

• conn - pconn, persistent (same as agent_persistent agent declaration)

• blackhole - 0,1 (same as agent_blackhole agent declaration)

• retry_count - integer (same as agent_retry_count, but provided num will not be multiplied to number of mirrors)

agent = address1:index-list[[ha_strategy=value] | [conn=value] | [blackhole=value]]

Example:

config on box2
sharding an index over 3 servers
agent = box2:9312:chunk2
agent = box3:9312:chunk3

(continues on next page)

11.3. Index configuration options 185

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

config on box2
sharding an index over 3 servers
agent = box1:9312:chunk2
agent = box3:9312:chunk3

config on box3
sharding an index over 3 servers
agent = box1:9312:chunk2
agent = box2:9312:chunk3

per agent options
agent = box1:9312:chunk1[ha_strategy=nodeads]
agent = box2:9312:chunk2[conn=pconn]
agent = test:9312:any[blackhole=1]
agent = test:9312|box2:9312|box3:9312:any2[retry_count=2]

Agent mirrors

The syntax lets you define so-called agent mirrors that can be used interchangeably when processing a search query.
Master server keeps track of mirror status (alive or dead) and response times, and does automatic failover and load
balancing based on that. For example, this line:

agent = box1:9312|box2:9312|box3:9312:chunk2

declares that box1:9312, box2:9312, and box3:9312 all have an index called chunk2, and can be used as interchange-
able mirrors. If any single of those servers go down, the queries will be distributed between the other two. When it
gets back up, master will detect that and begin routing queries to all three boxes again.

Another way to define the mirrors is to explicitly specify the index list for every mirror:

agent = box1:9312:box1chunk2|box2:9312:box2chunk2

This works essentially the same as the previous example, but different index names will be used when querying
different severs: box1chunk2 when querying box1:9312, and box2chunk when querying box2:9312.

By default, all queries are routed to the best of the mirrors. The best one is picked based on the recent statistics, as
controlled by the ha_period_karma config directive. Master stores a number of metrics (total query count, error count,
response time, etc) recently observed for every agent. It groups those by time spans, and karma is that time span
length. The best agent mirror is then determined dynamically based on the last 2 such time spans. Specific algorithm
that will be used to pick a mirror can be configured ha_strategy directive.

The karma period is in seconds and defaults to 60 seconds. Master stores up to 15 karma spans with per-agent statistics
for instrumentation purposes (see SHOW AGENT STATUS statement). However, only the last 2 spans out of those are
ever used for HA/LB logic.

When there are no queries, master sends a regular ping command every ha_ping_interval milliseconds in order to
have some statistics and at least check, whether the remote host is still alive. ha_ping_interval defaults to 1000 msec.
Setting it to 0 disables pings and statistics will only be accumulated based on actual queries.

Example:

sharding index over 4 servers total
in just 2 chunks but with 2 failover mirrors for each chunk
box1, box2 carry chunk1 as local
box3, box4 carry chunk2 as local

(continues on next page)

186 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

config on box1, box2
agent = box3:9312|box4:9312:chunk2

config on box3, box4
agent = box1:9312|box2:9312:chunk1

11.3.7 bigram_freq_words

A list of keywords considered “frequent” when indexing bigrams. Optional, default is empty.

Bigram indexing is a feature to accelerate phrase searches. When indexing, it stores a document list for either all
or some of the adjacent words pairs into the index. Such a list can then be used at searching time to significantly
accelerate phrase or sub-phrase matching.

Some of the bigram indexing modes (see bigram_index) require to define a list of frequent keywords. These are not
to be confused with stopwords! Stopwords are completely eliminated when both indexing and searching. Frequent
keywords are only used by bigrams to determine whether to index a current word pair or not.

bigram_freq_words lets you define a list of such keywords.

Example:

bigram_freq_words = the, a, you, i

11.3.8 bigram_index

Bigram indexing mode. Optional, default is none.

Bigram indexing is a feature to accelerate phrase searches. When indexing, it stores a document list for either all
or some of the adjacent words pairs into the index. Such a list can then be used at searching time to significantly
accelerate phrase or sub-phrase matching.

bigram_index controls the selection of specific word pairs. The known modes are:

• all, index every single word pair. (NB: probably totally not worth it even on a moderately sized index, but
added anyway for the sake of completeness.)

• first_freq, only index word pairs where the first word is in a list of frequent words (see bi-
gram_freq_words). For example, with bigram_freq_words = the, in, i, a, indexing “alone in
the dark” text will result in “in the” and “the dark” pairs being stored as bigrams, because they begin with a
frequent keyword (either “in” or “the” respectively), but “alone in” would not be indexed, because “in” is a
second word in that pair.

• both_freq, only index word pairs where both words are frequent. Continuing with the same example, in
this mode indexing “alone in the dark” would only store “in the” (the very worst of them all from searching
perspective) as a bigram, but none of the other word pairs.

For most usecases, both_freq would be the best mode, but your mileage may vary.

Example:

bigram_freq_words = both_freq

11.3. Index configuration options 187

Manticore Search Documentation, Release 2.6.1

11.3.9 blend_chars

Blended characters list. Optional, default is empty.

Blended characters are indexed both as separators and valid characters. For instance, assume that & is configured
as blended and AT&T occurs in an indexed document. Three different keywords will get indexed, namely “at&t”,
treating blended characters as valid, plus “at” and “t”, treating them as separators.

Positions for tokens obtained by replacing blended characters with whitespace are assigned as usual, so regular key-
words will be indexed just as if there was no blend_chars specified at all. An additional token that mixes blended
and non-blended characters will be put at the starting position. For instance, if the field contents are “AT&T company”
occurs in the very beginning of the text field, “at” will be given position 1, “t” position 2, “company” position 3, and
“AT&T” will also be given position 1 (“blending” with the opening regular keyword). Thus, querying for either AT&T
or just AT will match that document, and querying for “AT T” as a phrase also match it. Last but not least, phrase
query for “AT&T company” will also match it, despite the position

Blended characters can overlap with special characters used in query syntax (think of T-Mobile or @twitter). Where
possible, query parser will automatically handle blended character as blended. For instance, “hello @twitter” within
quotes (a phrase operator) would handle @-sign as blended, because @-syntax for field operator is not allowed within
phrases. Otherwise, the character would be handled as an operator. So you might want to escape the keywords.

Blended characters can be remapped, so that multiple different blended characters could be normalized into just one
base form. This is useful when indexing multiple alternative Unicode codepoints with equivalent glyphs.

Example:

blend_chars = +, &, U+23
blend_chars = +, &->+

11.3.10 blend_mode

Blended tokens indexing mode. Optional, default is trim_none.

By default, tokens that mix blended and non-blended characters get indexed in there entirety. For instance, when both
at-sign and an exclamation are in blend_chars, “@dude!” will get result in two tokens indexed: “@dude!” (with
all the blended characters) and “dude” (without any). Therefore “@dude” query will not match it.

blend_mode directive adds flexibility to this indexing behavior. It takes a comma-separated list of options.

blend_mode = option [, option [, ...]]
option = trim_none | trim_head | trim_tail | trim_both | skip_pure

Options specify token indexing variants. If multiple options are specified, multiple variants of the same token will be
indexed. Regular keywords (resulting from that token by replacing blended with whitespace) are always be indexed.

• trim_none

• Index the entire token.

• trim_head

• Trim heading blended characters, and index the resulting token.

• trim_tail

• Trim trailing blended characters, and index the resulting token.

• trim_both

• Trim both heading and trailing blended characters, and index the resulting token.

188 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

• skip_pure

• Do not index the token if it’s purely blended, that is, consists of blended characters only.

Returning to the “@dude!” example above, setting blend_mode = trim_head, trim_tail will result in two
tokens being indexed, “@dude” and”dude!“. In this particular example, trim_both would have no effect, because
trimming both blended characters results in”dude” which is already indexed as a regular keyword. Indexing “@U.S.A.”
with trim_both (and assuming that dot is blended two) would result in “U.S.A” being indexed. Last but not least,
skip_pure enables you to fully ignore sequences of blended characters only. For example, “one @@@ two” would
be indexed exactly as “one two”, and match that as a phrase. That is not the case by default because a fully blended
token gets indexed and offsets the second keyword position.

Default behavior is to index the entire token, equivalent to blend_mode = trim_none.

Example:

blend_mode = trim_tail, skip_pure

11.3.11 charset_table

Accepted characters table, with case folding rules. Optional, default value are latin and cyrillic characters.

charset_table is the main workhorse of Manticore tokenizing process, ie. the process of extracting keywords from
document text or query text. It controls what characters are accepted as valid and what are not, and how the accepted
characters should be transformed (eg. should the case be removed or not).

You can think of charset_table as of a big table that has a mapping for each and every of 100K+ characters in Unicode.
By default, every character maps to 0, which means that it does not occur within keywords and should be treated as a
separator. Once mentioned in the table, character is mapped to some other character (most frequently, either to itself
or to a lowercase letter), and is treated as a valid keyword part.

The expected value format is a commas-separated list of mappings. Two simplest mappings simply declare a character
as valid, and map a single character to another single character, respectively. But specifying the whole table in such
form would result in bloated and barely manageable specifications. So there are several syntax shortcuts that let you
map ranges of characters at once. The complete list is as follows:

• A->a

• Single char mapping, declares source char ‘A’ as allowed to occur within keywords and maps it to destination
char ‘a’ (but does not declare ‘a’ as allowed).

• A..Z->a..z

• Range mapping, declares all chars in source range as allowed and maps them to the destination range. Does not
declare destination range as allowed. Also checks ranges’ lengths (the lengths must be equal).

• a

• Stray char mapping, declares a character as allowed and maps it to itself. Equivalent to a->a single char mapping.

• a..z

• Stray range mapping, declares all characters in range as allowed and maps them to themselves. Equivalent to
a..z->a..z range mapping.

• A..Z/2

• Checkerboard range map. Maps every pair of chars to the second char. More formally, declares odd characters
in range as allowed and maps them to the even ones; also declares even characters as allowed and maps them
to themselves. For instance, A..Z/2 is equivalent to A->B, B->B, C->D, D->D, . . . , Y->Z, Z->Z. This mapping

11.3. Index configuration options 189

Manticore Search Documentation, Release 2.6.1

shortcut is helpful for a number of Unicode blocks where uppercase and lowercase letters go in such interleaved
order instead of contiguous chunks.

Control characters with codes from 0 to 31 are always treated as separators. Characters with codes 32 to 127, ie.
7-bit ASCII characters, can be used in the mappings as is. To avoid configuration file encoding issues, 8-bit ASCII
characters and Unicode characters must be specified in U+xxx form, where ‘xxx’ is hexadecimal codepoint number.
This form can also be used for 7-bit ASCII characters to encode special ones: eg. use U+20 to encode space, U+2E to
encode dot, U+2C to encode comma.

Aliases “english” and “russian” are allowed at control character mapping.

Example:

default are English and Russian letters
charset_table = 0..9, A..Z->a..z, _, a..z, \

U+410..U+42F->U+430..U+44F, U+430..U+44F, U+401->U+451, U+451

english charset defined with alias
charset_table = 0..9, english, _

11.3.12 dict

The keywords dictionary type. Known values are ‘crc’ and ‘keywords’. ‘crc’ is DEPRECATED. Use ‘keywords’
instead. Optional, default is ‘keywords’.

Keywords dictionary mode (dict=keywords), (greatly) reduces indexing impact and enable substring searches on huge
collections. That mode is supported both for disk and RT indexes.

CRC dictionaries never store the original keyword text in the index. Instead, keywords are replaced with their control
sum value (calculated using FNV64) both when searching and indexing, and that value is used internally in the index.

That approach has two drawbacks. First, there is a chance of control sum collision between several pairs of different
keywords, growing quadratically with the number of unique keywords in the index. However, it is not a big concern
as a chance of a single FNV64 collision in a dictionary of 1 billion entries is approximately 1:16, or 6.25 percent.
And most dictionaries will be much more compact that a billion keywords, as a typical spoken human language has in
the region of 1 to 10 million word forms.) Second, and more importantly, substring searches are not directly possible
with control sums. Manticore alleviated that by pre-indexing all the possible substrings as separate keywords (see
min_prefix_len, min_infix_len directives). That actually has an added benefit of matching substrings in the quickest
way possible. But at the same time pre-indexing all substrings grows the index size a lot (factors of 3-10x and even
more would not be unusual) and impacts the indexing time respectively, rendering substring searches on big indexes
rather impractical.

Keywords dictionary fixes both these drawbacks. It stores the keywords in the index and performs search-time wildcard
expansion. For example, a search for a ‘test*‘prefix could internally expand to ‘test|tests|testing’ query based on
the dictionary contents. That expansion is fully transparent to the application, except that the separate per-keyword
statistics for all the actually matched keywords would now also be reported.

For substring (infix) search extended wildcards may be used. Special symbols like ‘?’ and ‘%’ are supported along with
substring (infix) search (e.g. “t?st“,”run%“,”abc*“). Note, however, these wildcards work only with dict=keywords,
and not elsewhere.

Indexing with keywords dictionary should be 1.1x to 1.3x slower compared to regular, non-substring indexing - but
times faster compared to substring indexing (either prefix or infix). Index size should only be slightly bigger that
than of the regular non-substring index, with a 1..10% percent total difference. Regular keyword searching time must
be very close or identical across all three discussed index kinds (CRC non-substring, CRC substring, keywords).
Substring searching time can vary greatly depending on how many actual keywords match the given substring (in
other words, into how many keywords does the search term expand). The maximum number of keywords matched is
restricted by the expansion_limit directive.

190 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Essentially, keywords and CRC dictionaries represent the two different trade-off substring searching decisions. You
can choose to either sacrifice indexing time and index size in favor of top-speed worst-case searches (CRC dictionary),
or only slightly impact indexing time but sacrifice worst-case searching time when the prefix expands into very many
keywords (keywords dictionary).

Example:

dict = keywords

11.3.13 docinfo

Document attribute values (docinfo) storage mode. Optional, default is ‘extern’. Known values are ‘none’, ‘extern’
and ‘inline’.

Docinfo storage mode defines how exactly docinfo will be physically stored on disk and RAM. “none” means that
there will be no docinfo at all (ie. no attributes). Normally you need not to set “none” explicitly because Manticore
will automatically select “none” when there are no attributes configured. “inline” means that the docinfo will be
stored in the .spd file, along with the document ID lists. “extern” means that the docinfo will be stored separately
(externally) from document ID lists, in a special .spa file.

Basically, externally stored docinfo must be kept in RAM when querying. for performance reasons. So in some cases
“inline” might be the only option. However, such cases are infrequent, and docinfo defaults to “extern”. Refer to
Attributes for in-depth discussion and RAM usage estimates.

Example:

docinfo = inline

11.3.14 embedded_limit

Embedded exceptions, wordforms, or stopwords file size limit. Optional, default is 16K.

Indexer can either save the file name, or embed the file contents directly into the index. Files sized under
embedded_limit get stored into the index. For bigger files, only the file names are stored. This also simplifies
moving index files to a different machine; you may get by just copying a single file.

With smaller files, such embedding reduces the number of the external files on which the index depends, and helps
maintenance. But at the same time it makes no sense to embed a 100 MB wordforms dictionary into a tiny delta index.
So there needs to be a size threshold, and embedded_limit is that threshold.

Example:

embedded_limit = 32K

11.3.15 exceptions

Tokenizing exceptions file. Optional, default is empty.

Exceptions allow to map one or more tokens (including tokens with characters that would normally be excluded) to
a single keyword. They are similar to wordforms in that they also perform mapping, but have a number of important
differences.

Small enough files are stored in the index header, see embedded_limit for details.

Short summary of the differences is as follows:

11.3. Index configuration options 191

Manticore Search Documentation, Release 2.6.1

• exceptions are case sensitive, wordforms are not;

• exceptions can use special characters that are not in charset_table, wordforms fully obey charset_table;

• exceptions can underperform on huge dictionaries, wordforms handle millions of entries well.

The expected file format is also plain text, with one line per exception, and the line format is as follows:

map-from-tokens => map-to-token

Example file:

at & t => at&t
AT&T => AT&T
Standarten Fuehrer => standartenfuhrer
Standarten Fuhrer => standartenfuhrer
MS Windows => ms windows
Microsoft Windows => ms windows
C++ => cplusplus
c++ => cplusplus
C plus plus => cplusplus

All tokens here are case sensitive: they will not be processed by charset_table rules. Thus, with the example exceptions
file above, “at&t” text will be tokenized as two keywords “at” and “t”, because of lowercase letters. On the other hand,
“AT&T” will match exactly and produce single “AT&T” keyword.

Note that this map-to keyword is a) always interpreted as a single word, and b) is both case and space sensitive! In our
sample, “ms windows” query will not match the document with “MS Windows” text. The query will be interpreted as
a query for two keywords, “ms” and “windows”. And what “MS Windows” gets mapped to is a single keyword “ms
windows”, with a space in the middle. On the other hand, “standartenfuhrer” will retrieve documents with “Standarten
Fuhrer” or “Standarten Fuehrer” contents (capitalized exactly like this), or any capitalization variant of the keyword
itself, eg. “staNdarTenfUhreR”. (It won’t catch “standarten fuhrer”, however: this text does not match any of the listed
exceptions because of case sensitivity, and gets indexed as two separate keywords.)

Whitespace in the map-from tokens list matters, but its amount does not. Any amount of the whitespace in the map-
form list will match any other amount of whitespace in the indexed document or query. For instance, “AT & T”
map-from token will match “AT & T” text, whatever the amount of space in both map-from part and the indexed text.
Such text will therefore be indexed as a special “AT&T” keyword, thanks to the very first entry from the sample.

Exceptions also allow to capture special characters (that are exceptions from general charset_table rules; hence the
name). Assume that you generally do not want to treat ‘+’ as a valid character, but still want to be able search for some
exceptions from this rule such as ‘C++’. The sample above will do just that, totally independent of what characters
are in the table and what are not.

Exceptions are applied to raw incoming document and query data during indexing and searching respectively. There-
fore, to pick up changes in the file it’s required to reindex and restart searchd.

Example:

exceptions = /usr/local/sphinx/data/exceptions.txt

11.3.16 expand_keywords

Expand keywords with exact forms and/or stars when possible. Optional, default is 0 (do not expand keywords).

Queries against indexes with expand_keywords feature enabled are internally expanded as follows. If the index
was built with prefix or infix indexing enabled, every keyword gets internally replaced with a disjunction of key-
word itself and a respective prefix or infix (keyword with stars). If the index was built with both stemming and

192 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

index_exact_words enabled, exact form is also added. Here’s an example that shows how internal expansion works
when all of the above (infixes, stemming, and exact words) are combined:

running -> (running | *running* | =running)

Expanded queries take naturally longer to complete, but can possibly improve the search quality, as the documents
with exact form matches should be ranked generally higher than documents with stemmed or infix matches.

Note that the existing query syntax does not allow to emulate this kind of expansion, because internal expansion works
on keyword level and expands keywords within phrase or quorum operators too (which is not possible through the
query syntax).

This directive does not affect indexer in any way, it only affects searchd.

Example:

expand_keywords = 1

11.3.17 global_idf

The path to a file with global (cluster-wide) keyword IDFs. Optional, default is empty (use local IDFs).

On a multi-index cluster, per-keyword frequencies are quite likely to differ across different indexes. That means that
when the ranking function uses TF-IDF based values, such as BM25 family of factors, the results might be ranked
slightly different depending on what cluster node they reside.

The easiest way to fix that issue is to create and utilize a global frequency dictionary, or a global IDF file for short.
This directive lets you specify the location of that file. It it suggested (but not required) to use a .idf extension. When
the IDF file is specified for a given index and and OPTION global_idf is set to 1, the engine will use the keyword
frequencies and collection documents count from the global_idf file, rather than just the local index. That way, IDFs
and the values that depend on them will stay consistent across the cluster.

IDF files can be shared across multiple indexes. Only a single copy of an IDF file will be loaded by searchd, even
when many indexes refer to that file. Should the contents of an IDF file change, the new contents can be loaded with
a SIGHUP.

You can build an .idf file using indextool utility, by dumping dictionaries using --dumpdict switch first, then
converting those to .idf format using --buildidf, then merging all .idf files across cluser using --mergeidf.
Refer to indextool command reference for more information.

Example:

global_idf = /usr/local/sphinx/var/global.idf

11.3.18 ha_strategy

Agent mirror selection strategy, for load balancing. Optional, default is random.

The strategy used for mirror selection, or in other words, choosing a specific agent mirror in a distributed index.
Essentially, this directive controls how exactly master does the load balancing between the configured mirror agent
nodes. The following strategies are implemented:

Simple random balancing

11.3. Index configuration options 193

Manticore Search Documentation, Release 2.6.1

ha_strategy = random

The default balancing mode. Simple linear random distribution among the mirrors. That is, equal selection probability
are assigned to every mirror. Kind of similar to round-robin (RR), but unlike RR, does not impose a strict selection
order.

Adaptive randomized balancing

The default simple random strategy does not take mirror status, error rate, and, most importantly, actual response
latencies into account. So to accommodate for heterogeneous clusters and/or temporary spikes in agent node load,
we have a group of balancing strategies that dynamically adjusts the probabilities based on the actual query latencies
observed by the master.

The adaptive strategies based on latency-weighted probabilities basically work as follows:

• latency stats are accumulated, in blocks of ha_period_karma seconds;

• once per karma period, latency-weighted probabilities get recomputed;

• once per request (including ping requests), “dead or alive” flag is adjusted.

Currently, we begin with equal probabilities (or percentages, for brevity), and on every step, scale them by the inverse
of the latencies observed during the last “karma” period, and then renormalize them. For example, if during the first 60
seconds after the master startup 4 mirrors had latencies of 10, 5, 30, and 3 msec/query respectively, the first adjustment
step would go as follow:

• initial percentages: 0.25, 0.25, 0.25, 0.2%;

• observed latencies: 10 ms, 5 ms, 30 ms, 3 ms;

• inverse latencies: 0.1, 0.2, 0.0333, 0.333;

• scaled percentages: 0.025, 0.05, 0.008333, 0.0833;

• renormalized percentages: 0.15, 0.30, 0.05, 0.50.

Meaning that the 1st mirror would have a 15% chance of being chosen during the next karma period, the 2nd one a
30% chance, the 3rd one (slowest at 30 ms) only a 5% chance, and the 4th and the fastest one (at 3 ms) a 50% chance.
Then, after that period, the second adjustment step would update those chances again, and so on.

The rationale here is, once the observed latencies stabilize, the latency weighted probabilities stabilize as well. So
all these adjustment iterations are supposed to converge at a point where the average latencies are (roughly) equal over
all mirrors.

ha_strategy = nodeads

Latency-weighted probabilities, but dead mirrors are excluded from the selection. “Dead” mirror is defined as a mirror
that resulted in multiple hard errors (eg. network failure, or no answer, etc) in a row.

ha_strategy = noerrors

Latency-weighted probabilities, but mirrors with worse errors/success ratio are excluded from the selection.

Round-robin balancing

ha_strategy = roundrobin

194 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Simple round-robin selection, that is, selecting the 1st mirror in the list, then the 2nd one, then the 3rd one, etc, and
then repeating the process once the last mirror in the list is reached. Unlike with the randomized strategies, RR imposes
a strict querying order (1, 2, 3, .., N-1, N, 1, 2, 3, . . . and so on) and guarantees that no two subsequent queries will
be sent to the same mirror.

11.3.19 hitless_words

Hitless words list. Optional, allowed values are ‘all’, or a list file name.

By default, Manticore full-text index stores not only a list of matching documents for every given keyword, but also a
list of its in-document positions (aka hitlist). Hitlists enables phrase, proximity, strict order and other advanced types
of searching, as well as phrase proximity ranking. However, hitlists for specific frequent keywords (that can not be
stopped for some reason despite being frequent) can get huge and thus slow to process while querying. Also, in some
cases we might only care about boolean keyword matching, and never need position-based searching operators (such
as phrase matching) nor phrase ranking.

hitless_words lets you create indexes that either do not have positional information (hitlists) at all, or skip it for
specific keywords.

Hitless index will generally use less space than the respective regular index (about 1.5x can be expected). Both
indexing and searching should be faster, at a cost of missing positional query and ranking support. When searching,
positional queries (eg. phrase queries) will be automatically converted to respective non-positional (document-level)
or combined queries. For instance, if keywords “hello” and “world” are hitless, “hello world” phrase query will be
converted to (hello & world) bag-of-words query, matching all documents that mention either of the keywords but
not necessarily the exact phrase. And if, in addition, keywords “simon” and “says” are not hitless, “simon says hello
world” will be converted to (“simon says” & hello & world) query, matching all documents that contain “hello” and
“world” anywhere in the document, and also “simon says” as an exact phrase.

Example:

hitless_words = all

11.3.20 html_index_attrs

A list of markup attributes to index when stripping HTML. Optional, default is empty (do not index markup attributes).

Specifies HTML markup attributes whose contents should be retained and indexed even though other HTML markup
is stripped. The format is per-tag enumeration of indexable attributes, as shown in the example below.

Example:

html_index_attrs = img=alt,title; a=title;

11.3.21 html_remove_elements

A list of HTML elements for which to strip contents along with the elements themselves. Optional, default is empty
string (do not strip contents of any elements).

This feature allows to strip element contents, ie. everything that is between the opening and the closing tags. It is
useful to remove embedded scripts, CSS, etc. Short tag form for empty elements (ie.
) is properly supported; ie.
the text that follows such tag will not be removed.

The value is a comma-separated list of element (tag) names whose contents should be removed. Tag names are case
insensitive.

Example:

11.3. Index configuration options 195

Manticore Search Documentation, Release 2.6.1

html_remove_elements = style, script

11.3.22 html_strip

Whether to strip HTML markup from incoming full-text data. Optional, default is 0. Known values are 0 (disable
stripping) and 1 (enable stripping).

Both HTML tags and entities and considered markup and get processed.

HTML tags are removed, their contents (i.e., everything between <P> and </P>) are left intact by default. You can
choose to keep and index attributes of the tags (e.g., HREF attribute in an A tag, or ALT in an IMG one). Several
well-known inline tags are completely removed, all other tags are treated as block level and replaced with whitespace.
For example, ‘test’ text will be indexed as a single keyword ‘test’, however, ‘te<P>st</P>’ will be indexed
as two keywords ‘te’ and ‘st’. Known inline tags are as follows: A, B, I, S, U, BASEFONT, BIG, EM, FONT, IMG,
LABEL, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TT.

HTML entities get decoded and replaced with corresponding UTF-8 characters. Stripper supports both numeric forms
(such as ï) and text forms (such as ó or). All entities as specified by HTML4 standard are
supported.

Stripping should work with properly formed HTML and XHTML, but, just as most browsers, may produce unexpected
results on malformed input (such as HTML with stray <’s or unclosed >’s).

Only the tags themselves, and also HTML comments, are stripped. To strip the contents of the tags too (eg. to strip
embedded scripts), see html_remove_elements option. There are no restrictions on tag names; ie. everything that looks
like a valid tag start, or end, or a comment will be stripped.

Example:

html_strip = 1

11.3.23 ignore_chars

Ignored characters list. Optional, default is empty.

Useful in the cases when some characters, such as soft hyphenation mark (U+00AD), should be not just treated as
separators but rather fully ignored. For example, if ‘-’ is simply not in the charset_table, “abc-def” text will be indexed
as “abc” and “def” keywords. On the contrary, if ‘-’ is added to ignore_chars list, the same text will be indexed as a
single “abcdef” keyword.

The syntax is the same as for charset_table, but it’s only allowed to declare characters, and not allowed to map them.
Also, the ignored characters must not be present in charset_table.

Example:

ignore_chars = U+AD

11.3.24 index_exact_words

Whether to index the original keywords along with the stemmed/remapped versions. Optional, default is 0 (do not
index).

When enabled, index_exact_words forces indexer to put the raw keywords in the index along with the
stemmed versions. That, in turn, enables exact form operator in the query language to work. This impacts the in-
dex size and the indexing time. However, searching performance is not impacted at all.

196 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Example:

index_exact_words = 1

11.3.25 index_field_lengths

Enables computing and storing of field lengths (both per-document and average per-index values) into the index.
Optional, default is 0 (do not compute and store).

When index_field_lengths is set to 1, indexer will 1) create a respective length attribute for every full-
text field, sharing the same name but with __len_ suffix; 2) compute a field length (counted in keywords) for every
document and store in to a respective attribute; 3) compute the per-index averages. The lengths attributes will have
a special TOKENCOUNT type, but their values are in fact regular 32-bit integers, and their values are generally
accessible.

BM25A() and BM25F() functions in the expression ranker are based on these lengths and require
index_field_lengths to be enabled. Historically, Manticore used a simplified, stripped-down variant of BM25
that, unlike the complete function, did not account for document length. (We later realized that it should have been
called BM15 from the start.) Also we added support for both a complete variant of BM25, and its extension to-
wards multiple fields, called BM25F. They require per-document length and per-field lengths, respectively. Hence the
additional directive.

Example:

index_field_lengths = 1

11.3.26 index_sp

Whether to detect and index sentence and paragraph boundaries. Optional, default is 0 (do not detect and index).

This directive enables sentence and paragraph boundary indexing. It’s required for the SENTENCE and PARAGRAPH
operators to work. Sentence boundary detection is based on plain text analysis, so you only need to set index_sp
= 1 to enable it. Paragraph detection is however based on HTML markup, and happens in the HTML stripper. So
to index paragraph locations you also need to enable the stripper by specifying html_strip = 1. Both types of
boundaries are detected based on a few built-in rules enumerated just below.

Sentence boundary detection rules are as follows.

• Question and exclamation signs (? and !) are always a sentence boundary.

• Trailing dot (.) is a sentence boundary, except:

– When followed by a letter. That’s considered a part of an abbreviation (as in “S.T.A.L.K.E.R” or “Goldman
Sachs S.p.A.”).

– When followed by a comma. That’s considered an abbreviation followed by a comma (as in “Telecom
Italia S.p.A., founded in 1994”).

– When followed by a space and a small letter. That’s considered an abbreviation within a sentence (as in
“News Corp. announced in February”).

– When preceded by a space and a capital letter, and followed by a space. That’s considered a middle initial
(as in “John D. Doe”).

Paragraph boundaries are inserted at every block-level HTML tag. Namely, those are (as taken from HTML 4 standard)
ADDRESS, BLOCKQUOTE, CAPTION, CENTER, DD, DIV, DL, DT, H1, H2, H3, H4, H5, LI, MENU, OL, P, PRE,
TABLE, TBODY, TD, TFOOT, TH, THEAD, TR, and UL.

11.3. Index configuration options 197

Manticore Search Documentation, Release 2.6.1

Both sentences and paragraphs increment the keyword position counter by 1.

Example:

index_sp = 1

11.3.27 index_zones

A list of in-field HTML/XML zones to index. Optional, default is empty (do not index zones).

Zones can be formally defined as follows. Everything between an opening and a matching closing tag is called a span,
and the aggregate of all spans corresponding sharing the same tag name is called a zone. For instance, everything
between the occurrences of <H1> and </H1> in the document field belongs to H1 zone.

Zone indexing, enabled by index_zones directive, is an optional extension of the HTML stripper. So it will also
require that the stripper is enabled (with html_strip = 1). The value of the index_zones should be a comma-
separated list of those tag names and wildcards (ending with a star) that should be indexed as zones.

Zones can nest and overlap arbitrarily. The only requirement is that every opening tag has a matching tag. You can
also have an arbitrary number of both zones (as in unique zone names, such as H1) and spans (all the occurrences
of those H1 tags) in a document. Once indexed, zones can then be used for matching with the ZONE operator, see
Extended query syntax.

Example:

index_zones = h*, th, title

11.3.28 infix_fields

The list of full-text fields to limit infix indexing to. Applies to dict=crc only. Optional, default is empty (index all
fields in infix mode).

Similar to prefix_fields, but lets you limit infix-indexing to given fields.

Example:

infix_fields = url, domain

11.3.29 inplace_docinfo_gap

In-place inversion fine-tuning option. Controls preallocated docinfo gap size. Optional, default is 0.

This directive does not affect searchd in any way, it only affects indexer.

Example:

inplace_docinfo_gap = 1M

11.3.30 inplace_enable

Whether to enable in-place index inversion. Optional, default is 0 (use separate temporary files).

inplace_enable greatly reduces indexing disk footprint, at a cost of slightly slower indexing (it uses around 2x
less disk, but yields around 90-95% the original performance).

198 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Indexing involves two major phases. The first phase collects, processes, and partially sorts documents by keyword,
and writes the intermediate result to temporary files (.tmp*). The second phase fully sorts the documents, and creates
the final index files. Thus, rebuilding a production index on the fly involves around 3x peak disk footprint: 1st copy
for the intermediate temporary files, 2nd copy for newly constructed copy, and 3rd copy for the old index that will be
serving production queries in the meantime. (Intermediate data is comparable in size to the final index.) That might be
too much disk footprint for big data collections, and inplace_enable allows to reduce it. When enabled, it reuses
the temporary files, outputs the final data back to them, and renames them on completion. However, this might require
additional temporary data chunk relocation, which is where the performance impact comes from.

This directive does not affect searchd in any way, it only affects indexer.

Example:

inplace_enable = 1

11.3.31 inplace_hit_gap

In-place inversion fine-tuning option. Controls preallocated hitlist gap size. Optional, default is 0.

This directive does not affect searchd in any way, it only affects indexer.

Example:

inplace_hit_gap = 1M

11.3.32 inplace_reloc_factor

inplace_reloc_factor fine-tuning option. Controls relocation buffer size within indexing memory arena. Optional,
default is 0.1.

This directive does not affect searchd in any way, it only affects indexer.

Example:

inplace_reloc_factor = 0.1

11.3.33 inplace_write_factor

inplace_write_factor fine-tuning option. Controls in-place write buffer size within indexing memory arena. Optional,
default is 0.1.

This directive does not affect searchd in any way, it only affects indexer.

Example:

inplace_write_factor = 0.1

11.3.34 local

Local index declaration in the distributed index. Multi-value, optional, default is empty.

This setting is used to declare local indexes that will be searched when given distributed index is searched. Many local
indexes can be declared per each distributed index. Any local index can also be mentioned several times in different
distributed indexes.

11.3. Index configuration options 199

Manticore Search Documentation, Release 2.6.1

Note that by default all local indexes will be searched sequentially, utilizing only 1 CPU or core. To parallelize
processing of the local parts in the distributed index, you should use dist_threads.

Before dist_threads, there also was a legacy solution to configure searchd to query itself instead of using local
indexes (refer to agent for the details). However, that creates redundant CPU and network load, and dist_threads
is now strongly suggested instead.

Example:

local = chunk1
local = chunk2

11.3.35 max_substring_len

Maximum substring (either prefix or infix) length to index. Optional, default is 0 (do not limit indexed substrings).
Applies to dict=crc only.

By default, substring (either prefix or infix) indexing in the dict=crc mode will index all the possible substrings as
separate keywords. That might result in an overly large index. So the max_substring_len directive lets you
limit the impact of substring indexing by skipping too-long substrings (which, chances are, will never get searched for
anyway).

For example, a test index of 10,000 blog posts takes this much disk space depending on the settings:

• 6.4 MB baseline (no substrings)

• 24.3 MB (3.8x) with min_prefix_len = 3

• 22.2 MB (3.5x) with min_prefix_len = 3, max_substring_len = 8

• 19.3 MB (3.0x) with min_prefix_len = 3, max_substring_len = 6

• 94.3 MB (14.7x) with min_infix_len = 3

• 84.6 MB (13.2x) with min_infix_len = 3, max_substring_len = 8

• 70.7 MB (11.0x) with min_infix_len = 3, max_substring_len = 6

So in this test limiting the max substring length saved us 10-15% on the index size.

There is no performance impact associated with substring length when using dict=keywords mode, so this directive is
not applicable and intentionally forbidden in that case. If required, you can still limit the length of a substring that you
search for in the application code.

Example:

max_substring_len = 12

11.3.36 min_infix_len

Minimum infix prefix length to index and search. Optional, default is 0 (do not index infixes), and minimum allowed
non-zero value is 2.

Infix length setting enables wildcard searches with term patterns like ‘start’, ‘end’, ‘middle’, and so on. It also lets you
disable too short wildcards if those are too expensive to search for.

Perfect word matches can be differentiated from infix matches, and ranked higher, by utilizing all of the following
options: a) dict=keywords (on by default), b) index_exact_words=1 (off by default), and c) expand_keywords=1 (also
off by default). Note that either with the legacy dict=crc mode (which you should ditch anyway!), or with any of

200 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

the above options disable, there is no data to differentiate between the infixes and full words, and thus perfect word
matches can’t be ranked higher.

However, query time might vary greatly, depending on how many keywords the substring will actually expand to.
Short and frequent syllables like ‘in’ or ‘ti’ just might expand to way too many keywords, all of which would need to
be matched and processed. Therefore, to generally enable substring searches you would set min_infix_len to 2; and to
limit the impact from wildcard searches with too short wildcards, you might set it higher.

Infixes must be at least 2 characters long, wildcards like ‘a’ are not allowed for performance reasons. (While in theory
it is possible to scan the entire dictionary, identify keywords matching on just a single character, expand ‘a’ to an
OR operator over 100,000+ keywords, and evaluate that expanded query, in practice this will very definitely kill your
server.)

Example:

min_infix_len = 3

11.3.37 min_prefix_len

Minimum word prefix length to index. Optional, default is 0 (do not index prefixes).

Prefix indexing allows to implement wildcard searching by ‘wordstart*’ wildcards. When mininum prefix length is
set to a positive number, indexer will index all the possible keyword prefixes (ie. word beginnings) in addition to the
keywords themselves. Too short prefixes (below the minimum allowed length) will not be indexed.

For instance, indexing a keyword “example” with min_prefix_len=3 will result in indexing “exa”, “exam”, “examp”,
“exampl” prefixes along with the word itself. Searches against such index for “exam” will match documents that
contain “example” word, even if they do not contain “exam” on itself. However, indexing prefixes will make the index
grow significantly (because of many more indexed keywords), and will degrade both indexing and searching times.

Perfect word matches can be differentiated from prefix matches, and ranked higher, by utilizing all of the following
options: a) dict=keywords (on by default), b) index_exact_words=1 (off by default), and c) expand_keywords=1 (also
off by default). Note that either with the legacy dict=crc mode (which you should ditch anyway!), or with any of
the above options disable, there is no data to differentiate between the prefixes and full words, and thus perfect word
matches can’t be ranked higher.

Example:

min_prefix_len = 3

11.3.38 min_stemming_len

Minimum word length at which to enable stemming. Optional, default is 1 (stem everything).

Stemmers are not perfect, and might sometimes produce undesired results. For instance, running “gps” keyword
through Porter stemmer for English results in “gp”, which is not really the intent. min_stemming_len feature lets
you suppress stemming based on the source word length, ie. to avoid stemming too short words. Keywords that are
shorter than the given threshold will not be stemmed. Note that keywords that are exactly as long as specified will be
stemmed. So in order to avoid stemming 3-character keywords, you should specify 4 for the value. For more finely
grained control, refer to wordforms feature.

Example:

min_stemming_len = 4

11.3. Index configuration options 201

Manticore Search Documentation, Release 2.6.1

11.3.39 min_word_len

Minimum indexed word length. Optional, default is 1 (index everything).

Only those words that are not shorter than this minimum will be indexed. For instance, if min_word_len is 4, then
‘the’ won’t be indexed, but ‘they’ will be.

Example:

min_word_len = 4

11.3.40 mirror_retry_count

Same as index_agent_retry_count. If both values provided, mirror_retry_count will be taken, and the warning
about it will be fired.

11.3.41 mlock

Memory locking for cached data. Optional, default is 0 (do not call mlock()).

For search performance, searchd preloads a copy of .spa and .spi files in RAM, and keeps that copy in RAM at
all times. But if there are no searches on the index for some time, there are no accesses to that cached copy, and OS
might decide to swap it out to disk. First queries to such “cooled down” index will cause swap-in and their latency
will suffer.

Setting mlock option to 1 makes Manticore lock physical RAM used for that cached data using mlock(2) system call,
and that prevents swapping (see man 2 mlock for details). mlock(2) is a privileged call, so it will require searchd to
be either run from root account, or be granted enough privileges otherwise. If mlock() fails, a warning is emitted, but
index continues working.

Example:

mlock = 1

11.3.42 morphology

A list of morphology preprocessors (stemmers or lemmatizers) to apply. Optional, default is empty (do not apply any
preprocessor).

Morphology preprocessors can be applied to the words being indexed to replace different forms of the same word with
the base, normalized form. For instance, English stemmer will normalize both “dogs” and “dog” to “dog”, making
search results for both searches the same.

There are 3 different morphology preprocessors that Manticore implements: lemmatizers, stemmers, and phonetic
algorithms.

• Lemmatizer reduces a keyword form to a so-called lemma, a proper normal form, or in other words, a valid
natural language root word. For example, “running” could be reduced to “run”, the infinitive verb form, and
“octopi” would be reduced to “octopus”, the singular noun form. Note that sometimes a word form can have
multiple corresponding root words. For instance, by looking at “dove” it is not possible to tell whether this is a
past tense of “dive” the verb as in “He dove into a pool.”, or “dove” the noun as in “White dove flew over the
cuckoo’s nest.” In this case lemmatizer can generate all the possible root forms.

• Stemmer reduces a keyword form to a so-called stem by removing and/or replacing certain well-known suffixes.
The resulting stem is however not guaranteed to be a valid word on itself. For instance, with a Porter English

202 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

stemmers “running” would still reduce to “run”, which is fine, but “business” would reduce to “busi”, which is
not a word, and “octopi” would not reduce at all. Stemmers are essentially (much) simpler but still pretty good
replacements of full-blown lemmatizers.

• Phonetic algorithms replace the words with specially crafted phonetic codes that are equal even when the words
original are different, but phonetically close.

The morphology processors that come with our own built-in Manticore implementations are:

• English, Russian, and German lemmatizers;

• English, Russian, Arabic, and Czech stemmers;

• SoundEx and MetaPhone phonetic algorithms.

You can also link with libstemmer library for even more stemmers (see details below). With libstemmer, Manticore
also supports morphological processing for more than 15 other languages. Binary packages should come prebuilt with
libstemmer support, too.

Lemmatizers require a dictionary that needs to be additionally downloaded from the Manticore website. That dictio-
nary needs to be installed in a directory specified by lemmatizer_base directive. Also, there is a lemmatizer_cache
directive that lets you speed up lemmatizing (and therefore indexing) by spending more RAM for, basically, an un-
compressed cache of a dictionary.

Chinese segmentation using Rosette Linguistics Platform is also available. It is a much more precise but slower
way (compared to n-grams) to segment Chinese documents. charset_table must contain all Chinese characters ex-
cept Chinese punctuation marks because incoming documents are first processed by sphinx tokenizer and then the
result is processed by RLP. Manticore performs per-token language detection on the incoming documents. If token
language is identified as Chinese, it will only be processed the RLP, even if multiple morphology processors are
specified. Otherwise, it will be processed by all the morphology processors specified in the “morphology” option.
Rosette Linguistics Platform must be installed and configured and sphinx must be built with a –with-rlp switch. See
also rlp_root, rlp_environment and rlp_context options. A batched version of RLP segmentation is also available
(rlp_chinese_batched). It provides the same functionality as the basic rlp_chinese segmentation, but en-
ables batching documents before processing them by the RLP. Processing several documents at once can result in a
substantial indexing speedup if the documents are small (for example, less than 1k). See also rlp_max_batch_size and
rlp_max_batch_docs options.

Additional stemmers provided by Snowball project libstemmer library can be enabled at compile time using
--with-libstemmer configure option. Built-in English and Russian stemmers should be faster than their
libstemmer counterparts, but can produce slightly different results, because they are based on an older version.

Soundex implementation matches that of MySQL. Metaphone implementation is based on Double Metaphone algo-
rithm and indexes the primary code.

Built-in values that are available for use in morphology option are as follows:

• none - do not perform any morphology processing;

• lemmatize_ru - apply Russian lemmatizer and pick a single root form;

• lemmatize_en - apply English lemmatizer and pick a single root form;

• lemmatize_de - apply German lemmatizer and pick a single root form;

• lemmatize_ru_all - apply Russian lemmatizer and index all possible root forms;

• lemmatize_en_all - apply English lemmatizer and index all possible root forms;

• lemmatize_de_all - apply German lemmatizer and index all possible root forms;

• stem_en - apply Porter’s English stemmer;

• stem_ru - apply Porter’s Russian stemmer;

11.3. Index configuration options 203

http://snowball.tartarus.org/
http://snowball.tartarus.org/dist/libstemmer_c.tgz

Manticore Search Documentation, Release 2.6.1

• stem_enru - apply Porter’s English and Russian stemmers;

• stem_cz - apply Czech stemmer;

• stem_ar - apply Arabic stemmer;

• soundex - replace keywords with their SOUNDEX code;

• metaphone - replace keywords with their METAPHONE code.

• rlp_chinese - apply Chinese text segmentation using Rosette Linguistics Platform

• rlp_chinese_batched - apply Chinese text segmentation using Rosette Linguistics Platform with document batch-
ing

Additional values provided by libstemmer are in ‘libstemmer_XXX’ format, where XXX is libstemmer algorithm
codename (refer to libstemmer_c/libstemmer/modules.txt for a complete list).

Several stemmers can be specified (comma-separated). They will be applied to incoming words in the order they are
listed, and the processing will stop once one of the stemmers actually modifies the word. Also when wordforms feature
is enabled the word will be looked up in word forms dictionary first, and if there is a matching entry in the dictionary,
stemmers will not be applied at all. Or in other words, wordforms can be used to implement stemming exceptions.

Example:

morphology = stem_en, libstemmer_sv

11.3.43 morphology_skip_fields

A list of fields there morphology preprocessors do not apply. Optional, default is empty (apply preprocessors to all
fields).

Used on indexing there only exact form of words got stored for defined fields.

Example:

morphology_skip_fields = tags, name

11.3.44 ngram_chars

N-gram characters list. Optional, default is empty.

To be used in conjunction with in ngram_len, this list defines characters, sequences of which are subject to N-gram
extraction. Words comprised of other characters will not be affected by N-gram indexing feature. The value format is
identical to charset_table.

Example:

ngram_chars = U+3000..U+2FA1F

11.3.45 ngram_len

N-gram lengths for N-gram indexing. Optional, default is 0 (disable n-gram indexing). Known values are 0 and 1
(other lengths to be implemented).

N-grams provide basic CJK (Chinese, Japanese, Korean) support for unsegmented texts. The issue with CJK searching
is that there could be no clear separators between the words. Ideally, the texts would be filtered through a special

204 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

program called segmenter that would insert separators in proper locations. However, segmenters are slow and error
prone, and it’s common to index contiguous groups of N characters, or n-grams, instead.

When this feature is enabled, streams of CJK characters are indexed as N-grams. For example, if incoming text is
“ABCDEF” (where A to F represent some CJK characters) and length is 1, in will be indexed as if it was “A B C D
E F”. (With length equal to 2, it would produce “AB BC CD DE EF”; but only 1 is supported at the moment.) Only
those characters that are listed in ngram_chars table will be split this way; other ones will not be affected.

Note that if search query is segmented, ie. there are separators between individual words, then wrapping the words in
quotes and using extended mode will result in proper matches being found even if the text was not segmented. For
instance, assume that the original query is BC DEF. After wrapping in quotes on the application side, it should look
like “BC” “DEF” (with quotes). This query will be passed to Manticore and internally split into 1-grams too, resulting
in “B C” “D E F” query, still with quotes that are the phrase matching operator. And it will match the text even though
there were no separators in the text.

Even if the search query is not segmented, Manticore should still produce good results, thanks to phrase based ranking:
it will pull closer phrase matches (which in case of N-gram CJK words can mean closer multi-character word matches)
to the top.

Example:

ngram_len = 1

11.3.46 ondisk_attrs

Allows for fine-grain control over how attributes are loaded into memory when using indexes with external storage.
It is possible to keep attributes on disk. Although, the daemon does map them to memory and the OS loads small
chunks of data on demand. This allows use of docinfo = extern instead of docinfo = inline, but still leaves plenty of
free memory for cases when you have large collections of pooled attributes (string/JSON/MVA) or when you’re using
many indexes per daemon that don’t consume memory. It is not possible to update attributes left on disk when this
option is enabled and the constraint of 4Gb of entries per pool is still in effect.

Note that this option also affects RT indexes. When it is enabled, all attribute updates will be disabled, and also all
disk chunks of RT indexes will behave described above. However inserting and deleting of docs from RT indexes is
still possible with enabled ondisk_attrs.

Possible values:

• 0 - disabled and default value, all attributes are loaded in memory (the normal behaviour of docinfo = extern)

• 1 - all attributes stay on disk. Daemon loads no files (spa, spm, sps). This is the most memory conserving mode,
however it is also the slowest as the whole doc-id-list and block index doesn’t load.

• pool - only pooled attributes stay on disk. Pooled attributes are string, MVA, and JSON attributes (sps, spm
files). Scalar attributes stored in docinfo (spa file) load as usual.

This option does not affect indexing in any way, it only requires daemon restart.

Example:

ondisk_attrs = pool #keep pooled attributes on disk

11.3.47 overshort_step

Position increment on overshort (less that min_word_len) keywords. Optional, allowed values are 0 and 1, default is
1.

This directive does not affect searchd in any way, it only affects indexer.

11.3. Index configuration options 205

Manticore Search Documentation, Release 2.6.1

Example:

overshort_step = 1

11.3.48 path

Index files path and file name (without extension). Mandatory.

Path specifies both directory and file name, but without extension. indexer will append different extensions to this
path when generating final names for both permanent and temporary index files. Permanent data files have several
different extensions starting with ‘.sp’; temporary files’ extensions start with ‘.tmp’. It’s safe to remove .tmp* files
is if indexer fails to remove them automatically.

For reference, different index files store the following data:

• .spa stores document attributes (used in extern docinfo storage mode only);

• .spd stores matching document ID lists for each word ID;

• .sph stores index header information;

• .spi stores word lists (word IDs and pointers to .spd file);

• .spk stores kill-lists;

• .spm stores MVA data;

• .spp stores hit (aka posting, aka word occurrence) lists for each word ID;

• .sps stores string attribute data.

• .spe stores skip-lists to speed up doc-list filtering

Example:

path = /var/data/test1

11.3.49 phrase_boundary

Phrase boundary characters list. Optional, default is empty.

This list controls what characters will be treated as phrase boundaries, in order to adjust word positions and enable
phrase-level search emulation through proximity search. The syntax is similar to charset_table. Mappings are not
allowed and the boundary characters must not overlap with anything else.

On phrase boundary, additional word position increment (specified by phrase_boundary_step) will be added to current
word position. This enables phrase-level searching through proximity queries: words in different phrases will be
guaranteed to be more than phrase_boundary_step distance away from each other; so proximity search within that
distance will be equivalent to phrase-level search.

Phrase boundary condition will be raised if and only if such character is followed by a separator; this is to avoid
abbreviations such as S.T.A.L.K.E.R or URLs being treated as several phrases.

Example:

phrase_boundary = ., ?, !, U+2026 # horizontal ellipsis

206 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.3.50 phrase_boundary_step

Phrase boundary word position increment. Optional, default is 0.

On phrase boundary, current word position will be additionally incremented by this number. See phrase_boundary for
details.

Example:

phrase_boundary_step = 100

11.3.51 prefix_fields

The list of full-text fields to limit prefix indexing to. Applies to dict=crc only. Optional, default is empty (index all
fields in prefix mode).

Because prefix indexing impacts both indexing and searching performance, it might be desired to limit it to specific
full-text fields only: for instance, to provide prefix searching through URLs, but not through page contents. pre-
fix_fields specifies what fields will be prefix-indexed; all other fields will be indexed in normal mode. The value
format is a comma-separated list of field names.

Example:

prefix_fields = url, domain

11.3.52 preopen

Whether to pre-open all index files, or open them per each query. Optional, default is 0 (do not preopen).

This option tells searchd that it should pre-open all index files on startup (or rotation) and keep them open while
it runs. Currently, the default mode is not to pre-open the files (this may change in the future). Preopened indexes
take a few (currently 2) file descriptors per index. However, they save on per-query open() calls; and also they are
invulnerable to subtle race conditions that may happen during index rotation under high load. On the other hand, when
serving many indexes (100s to 1000s), it still might be desired to open the on per-query basis in order to save file
descriptors.

This directive does not affect indexer in any way, it only affects searchd.

Example:

preopen = 1

11.3.53 regexp_filter

Regular expressions (regexps) to filter the fields and queries with. Optional, multi-value, default is an empty list of
regexps.

In certain applications (like product search) there can be many different ways to call a model, or a product, or a
property, and so on. For instance, ‘iphone 3gs’ and ‘iphone 3 gs’ (or even ‘iphone3 gs’) are very likely to mean the
same product. Or, for a more tricky example, ‘13-inch’, ‘13 inch’, ‘13“‘, and ‘13in’ in a laptop screen size descriptions
do mean the same.

Regexps provide you with a mechanism to specify a number of rules specific to your application to handle such cases.
In the first ‘iphone 3gs’ example, you could possibly get away with a wordforms files tailored to handle a handful
of iPhone models. However even in a comparatively simple second ‘13-inch’ example there is just way too many

11.3. Index configuration options 207

Manticore Search Documentation, Release 2.6.1

individual forms and you are better off specifying rules that would normalize both ‘13-inch’ and ‘13in’ to something
identical.

Regular expressions listed in regexp_filter are applied in the order they are listed. That happens at the earliest
stage possible, before any other processing, even before tokenization. That is, regexps are applied to the raw source
fields when indexing, and to the raw search query text when searching.

We use the RE2 engine to implement regexps. So when building from the source, the library must be installed in the
system and Manticore must be configured built with a --with-re2 switch. Binary packages should come with RE2
builtin.

Example:

index '13-inch' as '13inch'
regexp_filter = **(\d+)\" => \1inch

index 'blue' or 'red' as 'color'
regexp_filter = (blue|red) => color

11.3.54 rlp_context

RLP context configuration file. Mandatory if RLP is used.

Example:

rlp_context = /home/myuser/RLP/rlp-context.xml

11.3.55 rt_attr_bigint

BIGINT attribute declaration. Multi-value (an arbitrary number of attributes is allowed), optional. Declares a signed
64-bit attribute.

Example:

rt_attr_bigint = guid

11.3.56 rt_attr_bool

Boolean attribute declaration. Multi-value (there might be multiple attributes declared), optional. Declares a 1-bit
unsigned integer attribute.

Example:

rt_attr_bool = available

11.3.57 rt_attr_float

Floating point attribute declaration. Multi-value (an arbitrary number of attributes is allowed), optional. Declares a
single precision, 32-bit IEEE 754 format float attribute.

Example:

rt_attr_float = gpa

208 Chapter 11. Configuration reference

https://github.com/google/re2

Manticore Search Documentation, Release 2.6.1

11.3.58 rt_attr_json

JSON attribute declaration. Multi-value (ie. there may be more than one such attribute declared), optional.

Refer to sql_attr_json for more details on the JSON attributes.

Example:

rt_attr_json = properties

11.3.59 rt_attr_multi_64

Multi-valued attribute (MVA) declaration. Declares the BIGINT (signed 64-bit) MVA attribute. Multi-value (ie. there
may be more than one such attribute declared), optional. Applies to RT indexes only.

Example:

rt_attr_multi_64 = my_wide_tags

11.3.60 rt_attr_multi

Multi-valued attribute (MVA) declaration. Declares the UNSIGNED INTEGER (unsigned 32-bit) MVA attribute.
Multi-value (ie. there may be more than one such attribute declared), optional. Applies to RT indexes only.

Example:

rt_attr_multi = my_tags

11.3.61 rt_attr_string

String attribute declaration. Multi-value (an arbitrary number of attributes is allowed), optional.

Example:

rt_attr_string = author

11.3.62 rt_attr_timestamp

Timestamp attribute declaration. Multi-value (an arbitrary number of attributes is allowed), optional.

Example:

rt_attr_timestamp = date_added

11.3.63 rt_attr_uint

Unsigned integer attribute declaration. Multi-value (an arbitrary number of attributes is allowed), optional. Declares
an unsigned 32-bit attribute.

Example:

11.3. Index configuration options 209

Manticore Search Documentation, Release 2.6.1

rt_attr_uint = gid

11.3.64 rt_field

Full-text field declaration. Multi-value, mandatory

Full-text fields to be indexed are declared using rt_field directive. The names must be unique. The order is
preserved; and so field values in INSERT statements without an explicit list of inserted columns will have to be in the
same order as configured.

Example:

rt_field = author
rt_field = title
rt_field = content

11.3.65 rt_mem_limit

RAM chunk size limit. Optional, default is 128M.

RT index keeps some data in memory (so-called RAM chunk) and also maintains a number of on-disk indexes (so-
called disk chunks). This directive lets you control the RAM chunk size. Once there’s too much data to keep in RAM,
RT index will flush it to disk, activate a newly created disk chunk, and reset the RAM chunk.

The limit is pretty strict; RT index should never allocate more memory than it’s limited to. The memory is not
preallocated either, hence, specifying 512 MB limit and only inserting 3 MB of data should result in allocating 3 MB,
not 512 MB.

Example:

rt_mem_limit = 512M

11.3.66 source

Adds document source to local index. Multi-value, mandatory.

Specifies document source to get documents from when the current index is indexed. There must be at least one
source. There may be multiple sources, without any restrictions on the source types: ie. you can pull part of the data
from MySQL server, part from PostgreSQL, part from the filesystem using xmlpipe2 wrapper.

However, there are some restrictions on the source data. First, document IDs must be globally unique across all
sources. If that condition is not met, you might get unexpected search results. Second, source schemas must be the
same in order to be stored within the same index.

No source ID is stored automatically. Therefore, in order to be able to tell what source the matched document came
from, you will need to store some additional information yourself. Two typical approaches include:

1. mangling document ID and encoding source ID in it:

source src1
{

sql_query = SELECT id*10+1, ... FROM table1
...

}

(continues on next page)

210 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

source src2
{

sql_query = SELECT id*10+2, ... FROM table2
...

}

2. storing source ID simply as an attribute:

source src1
{

sql_query = SELECT id, 1 AS source_id FROM table1
sql_attr_uint = source_id
...

}

source src2
{

sql_query = SELECT id, 2 AS source_id FROM table2
sql_attr_uint = source_id
...

}

Example:

source = srcpart1
source = srcpart2
source = srcpart3

11.3.67 stopwords

Stopword files list (space separated). Optional, default is empty.

Stopwords are the words that will not be indexed. Typically you’d put most frequent words in the stopwords list
because they do not add much value to search results but consume a lot of resources to process.

You can specify several file names, separated by spaces. All the files will be loaded. Stopwords file format is simple
plain text. The encoding must be UTF-8. File data will be tokenized with respect to charset_table settings, so you can
use the same separators as in the indexed data.

The stemmers will normally be applied when parsing stopwords file. That might however lead to undesired results.
You can turn that off with stopwords_unstemmed.

Small enough files are stored in the index header, see embedded_limit for details.

While stopwords are not indexed, they still do affect the keyword positions. For instance, assume that “the” is a
stopword, that document 1 contains the line “in office”, and that document 2 contains “in the office”. Searching for
“in office” as for exact phrase will only return the first document, as expected, even though “the” in the second one is
stopped. That behavior can be tweaked through the stopword_step directive.

Stopwords files can either be created manually, or semi-automatically. indexer provides a mode that creates a
frequency dictionary of the index, sorted by the keyword frequency, see --buildstops and --buildfreqs
switch in indexer command reference. Top keywords from that dictionary can usually be used as stopwords.

Example:

11.3. Index configuration options 211

Manticore Search Documentation, Release 2.6.1

stopwords = /usr/local/sphinx/data/stopwords.txt
stopwords = stopwords-ru.txt stopwords-en.txt

11.3.68 stopword_step

Position increment on stopwords. Optional, allowed values are 0 and 1, default is 1.

This directive does not affect searchd in any way, it only affects indexer.

Example:

stopword_step = 1

11.3.69 stopwords_unstemmed

Whether to apply stopwords before or after stemming. Optional, default is 0 (apply stopword filter after stemming).

By default, stopwords are stemmed themselves, and applied to tokens after stemming (or any other morphology
processing). In other words, by default, a token is stopped when stem(token) == stem(stopword). That can lead to
unexpected results when a token gets (erroneously) stemmed to a stopped root. For example, ‘Andes’ gets stemmed to
‘and’ by our current stemmer implementation, so when ‘and’ is a stopword, ‘Andes’ is also stopped.

stopwords_unstemmed directive fixes that issue. When it’s enabled, stopwords are applied before stemming (and
therefore to the original word forms), and the tokens are stopped when token == stopword.

Example:

stopwords_unstemmed = 1

11.3.70 type

Index type. Known values are plain, distributed, rt, template and percolate. Optional, default is
‘plain’ (plain local index).

Manticore supports several different types of indexes. Plain local indexes are stored and processed on the local ma-
chine. Distributed indexes involve not only local searching but querying remote searchd instances over the network
as well (see Distributed searching). Real-time indexes (or RT indexes for short) are also stored and processed locally,
but additionally allow for on-the-fly updates of the full-text index (see Real-time indexes). Note that attributes can
be updated on-the-fly using either plain local indexes or RT ones. Template indexes are actually a pseudo-indexes
because they do not store any data. That means they do not create any files on your hard drive. But you can use them
for keywords and snippets generation, which may be useful in some cases, and also as templates to inherit real indexes
from them.

Index type setting lets you choose the needed type. By default, plain local index type will be assumed.

Example:

type = distributed

11.3.71 wordforms

Word forms dictionary. Optional, default is empty.

212 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

Word forms are applied after tokenizing the incoming text by charset_table rules. They essentially let you replace
one word with another. Normally, that would be used to bring different word forms to a single normal form (eg. to
normalize all the variants such as “walks”, “walked”, “walking” to the normal form “walk”). It can also be used to
implement stemming exceptions, because stemming is not applied to words found in the forms list.

Small enough files are stored in the index header, see embedded_limit for details.

Dictionaries are used to normalize incoming words both during indexing and searching. Therefore, to pick up changes
in wordforms file it’s required to rotate index.

Word forms support in Manticore is designed to support big dictionaries well. They moderately affect indexing speed:
for instance, a dictionary with 1 million entries slows down indexing about 1.5 times. Searching speed is not affected
at all. Additional RAM impact is roughly equal to the dictionary file size, and dictionaries are shared across indexes:
ie. if the very same 50 MB wordforms file is specified for 10 different indexes, additional searchd RAM usage will
be about 50 MB.

Dictionary file should be in a simple plain text format. Each line should contain source and destination word forms,
in UTF-8 encoding, separated by “greater” sign. Rules from the charset_table will be applied when the file is loaded.
So basically it’s as case sensitive as your other full-text indexed data, ie. typically case insensitive. Here’s the file
contents sample:

walks > walk
walked > walk
walking > walk

There is a bundled spelldump utility that helps you create a dictionary file in the format Manticore can read from
source .dict and .aff dictionary files in ispell or MySpell format (as bundled with OpenOffice).

You can map several source words to a single destination word. Because the work happens on tokens, not the source
text, differences in whitespace and markup are ignored.

You can use “=>” instead of “>”. Comments (starting with “#” are also allowed. Finally, if a line starts with a tilde
(“~”) the wordform will be applied after morphology, instead of before.

core 2 duo > c2d
e6600 > c2d
core 2duo => c2d # Some people write '2duo' together...

You can specify multiple destination tokens:

s02e02 > season 2 episode 2
s3 e3 > season 3 episode 3

Example:

wordforms = /usr/local/sphinx/data/wordforms.txt
wordforms = /usr/local/sphinx/data/alternateforms.txt
wordforms = /usr/local/sphinx/private/dict*.txt

You can specify several files and not only just one. Masks can be used as a pattern, and all matching files will be
processed in simple ascending order. (If multi-byte codepages are used, and file names can include foreign characters,
the resulting order may not be exactly alphabetic.) If a same wordform definition is found in several files, the latter
one is used, and it overrides previous definitions.

11.3. Index configuration options 213

Manticore Search Documentation, Release 2.6.1

11.4 indexer program configuration options

11.4.1 lemmatizer_cache

Lemmatizer cache size. Optional, default is 256K.

Our lemmatizer implementation (see morphology for a discussion of what lemmatizers are) uses a compressed dictio-
nary format that enables a space/speed tradeoff. It can either perform lemmatization off the compressed data, using
more CPU but less RAM, or it can decompress and precache the dictionary either partially or fully, thus using less
CPU but more RAM. And the lemmatizer_cache directive lets you control how much RAM exactly can be spent for
that uncompressed dictionary cache.

Currently, the only available dictionaries are ru.pak, en.pak, and de.pak. These are the russian, english and german
dictionaries. The compressed dictionary is approximately 2 to 10 MB in size. Note that the dictionary stays in memory
at all times, too. The default cache size is 256 KB. The accepted cache sizes are 0 to 2047 MB. It’s safe to raise the
cache size too high; the lemmatizer will only use the needed memory. For instance, the entire Russian dictionary
decompresses to approximately 110 MB; and thus setting lemmatizer_cache anywhere higher than that will not affect
the memory use: even when 1024 MB is allowed for the cache, if only 110 MB is needed, it will only use those 110
MB.

On our benchmarks, the total indexing time with different cache sizes was as follows:

• 9.07 sec, morphology = lemmatize_ru, lemmatizer_cache = 0

• 8.60 sec, morphology = lemmatize_ru, lemmatizer_cache = 256K

• 8.33 sec, morphology = lemmatize_ru, lemmatizer_cache = 8M

• 7.95 sec, morphology = lemmatize_ru, lemmatizer_cache = 128M

• 6.85 sec, morphology = stem_ru (baseline)

Your mileage may vary, but a simple rule of thumb would be to either go with the small default 256 KB cache when
pressed for memory, or spend 128 MB extra RAM and cache the entire dictionary for maximum indexing performance.

Example:

lemmatizer_cache = 256M # cache it all

11.4.2 max_file_field_buffer

Maximum file field adaptive buffer size, bytes. Optional, default is 8 MB, minimum is 1 MB.

File field buffer is used to load files referred to from sql_file_field columns. This buffer is adaptive, starting at 1 MB
at first allocation, and growing in 2x steps until either file contents can be loaded, or maximum buffer size, specified
by max_file_field_buffer directive, is reached.

Thus, if there are no file fields are specified, no buffer is allocated at all. If all files loaded during indexing are under
(for example) 2 MB in size, but max_file_field_buffer value is 128 MB, peak buffer usage would still be
only 2 MB. However, files over 128 MB would be entirely skipped.

Example:

max_file_field_buffer = 128M

214 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.4.3 max_iops

Maximum I/O operations per second, for I/O throttling. Optional, default is 0 (unlimited).

I/O throttling related option. It limits maximum count of I/O operations (reads or writes) per any given second. A
value of 0 means that no limit is imposed.

indexer can cause bursts of intensive disk I/O during indexing, and it might desired to limit its disk activity (and
keep something for other programs running on the same machine, such as searchd). I/O throttling helps to do that.
It works by enforcing a minimum guaranteed delay between subsequent disk I/O operations performed by indexer.
Modern SATA HDDs are able to perform up to 70-100+ I/O operations per second (that’s mostly limited by disk heads
seek time). Limiting indexing I/O to a fraction of that can help reduce search performance degradation caused by
indexing.

Example:

max_iops = 40

11.4.4 max_iosize

Maximum allowed I/O operation size, in bytes, for I/O throttling. Optional, default is 0 (unlimited).

I/O throttling related option. It limits maximum file I/O operation (read or write) size for all operations performed by
indexer. A value of 0 means that no limit is imposed. Reads or writes that are bigger than the limit will be split in
several smaller operations, and counted as several operation by max_iops setting. At the time of this writing, all I/O
calls should be under 256 KB (default internal buffer size) anyway, so max_iosize values higher than 256 KB must
not affect anything.

Example:

max_iosize = 1048576

11.4.5 max_xmlpipe2_field

Maximum allowed field size for XMLpipe2 source type, bytes. Optional, default is 2 MB.

Example:

max_xmlpipe2_field = 8M

11.4.6 mem_limit

Indexing RAM usage limit. Optional, default is 128M.

Enforced memory usage limit that the indexer will not go above. Can be specified in bytes, or kilobytes (using K
postfix), or megabytes (using M postfix); see the example. This limit will be automatically raised if set to extremely
low value causing I/O buffers to be less than 8 KB; the exact lower bound for that depends on the indexed data size. If
the buffers are less than 256 KB, a warning will be produced.

Maximum possible limit is 2047M. Too low values can hurt indexing speed, but 256M to 1024M should be enough
for most if not all datasets. Setting this value too high can cause SQL server timeouts. During the document collection
phase, there will be periods when the memory buffer is partially sorted and no communication with the database is
performed; and the database server can timeout. You can resolve that either by raising timeouts on SQL server side or
by lowering mem_limit.

11.4. indexer program configuration options 215

Manticore Search Documentation, Release 2.6.1

Example:

mem_limit = 256M
mem_limit = 262144K # same, but in KB
mem_limit = 268435456 # same, but in bytes

11.4.7 on_file_field_error

How to handle IO errors in file fields. Optional, default is ignore_field.

When there is a problem indexing a file referenced by a file field (sql_file_field), indexer can either index
the document, assuming empty content in this particular field, or skip the document, or fail indexing entirely.
on_file_field_error directive controls that behavior. The values it takes are:

• ignore_field, index the current document without field;

• skip_document, skip the current document but continue indexing;

• fail_index, fail indexing with an error message.

The problems that can arise are: open error, size error (file too big), and data read error. Warning messages on any
problem will be given at all times, irregardless of the phase and the on_file_field_error setting.

Note that with on_file_field_error = skip_document documents will only be ignored if problems are
detected during an early check phase, and not during the actual file parsing phase. indexer will open every refer-
enced file and check its size before doing any work, and then open it again when doing actual parsing work. So in case
a file goes away between these two open attempts, the document will still be indexed.

Example:

on_file_field_error = skip_document

11.4.8 write_buffer

Write buffer size, bytes. Optional, default is 1 MB.

Write buffers are used to write both temporary and final index files when indexing. Larger buffers reduce the number
of required disk writes. Memory for the buffers is allocated in addition to mem_limit. Note that several (currently up
to 4) buffers for different files will be allocated, proportionally increasing the RAM usage.

Example:

write_buffer = 4M

11.5 searchd program configuration options

11.5.1 agent_connect_timeout

Instance-wide defaults for agent_connect_timeout parameter. The last defined in distributed (network) indexes.

11.5.2 agent_query_timeout

Instance-wide defaults for agent_query_timeout parameter. The last defined in distributed (network) indexes, or also
may be overrided per-query using OPTION clause.

216 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.5.3 agent_retry_count

Integer, specifies how many times manticore will try to connect and query remote agents in distributed index before
reporting fatal query error. Default is 0 (i.e. no retries). This value may be also specified on per-query basis using
‘OPTION retry_count=XXX’ clause. If per-query option exists, it will override the one specified in config.

Note, that if you use agent mirrors in definition of your distributed index, then before every attempt of connect daemon
will select different mirror, according to specified ha_strategyspecified. In this case agent_retry_count will be
aggregated for all mirrors in a set.

For example, if you have 10 mirrors, and set agent_retry_count=5, then daemon will retry up to 50 times,
assuming average 5 tries per every of 10 mirrors. (in case of option ha_strategy = roundrobin it will be
actually so).

In the same time value provided as retry_count option of agent definition serves as absolute limit. Otherwords,
[retry_count=2] option in agent definition means always at most 2 tries, no mean if you have 1 or 10 mirrors in
a line.

11.5.4 agent_retry_delay

Integer, in milliseconds. Specifies the delay sphinx rest before retrying to query a remote agent in case it fails. The
value has sense only if non-zero agent_retry_count or non-zero per-query OPTION retry_count specified. Default is
500. This value may be also specified on per-query basis using ‘OPTION retry_delay=XXX’ clause. If per-query
option exists, it will override the one specified in config.

11.5.5 attr_flush_period

When calling UpdateAttributes() to update document attributes in real-time, changes are first written to the
in-memory copy of attributes (docinfo must be set to extern). Then, once searchd shuts down normally (via
SIGTERM being sent), the changes are written to disk.

It is possible to tell searchd to periodically write these changes back to disk, to avoid them being lost. The time
between those intervals is set with attr_flush_period, in seconds.

It defaults to 0, which disables the periodic flushing, but flushing will still occur at normal shut-down.

Example:

attr_flush_period = 900 # persist updates to disk every 15 minutes

11.5.6 binlog_flush

Binary log transaction flush/sync mode. Optional, default is 2 (flush every transaction, sync every second).

This directive controls how frequently will binary log be flushed to OS and synced to disk. Three modes are supported:

• 0, flush and sync every second. Best performance, but up to 1 second worth of committed transactions can be
lost both on daemon crash, or OS/hardware crash.

• 1, flush and sync every transaction. Worst performance, but every committed transaction data is guaranteed to
be saved.

• 2, flush every transaction, sync every second. Good performance, and every committed transaction is guaranteed
to be saved in case of daemon crash. However, in case of OS/hardware crash up to 1 second worth of committed
transactions can be lost.

11.5. searchd program configuration options 217

Manticore Search Documentation, Release 2.6.1

For those familiar with MySQL and InnoDB, this directive is entirely similar to
innodb_flush_log_at_trx_commit. In most cases, the default hybrid mode 2 provides a nice balance
of speed and safety, with full RT index data protection against daemon crashes, and some protection against hardware
ones.

Example:

binlog_flush = 1 # ultimate safety, low speed

11.5.7 binlog_max_log_size

Maximum binary log file size. Optional, default is 0 (do not reopen binlog file based on size).

A new binlog file will be forcibly opened once the current binlog file reaches this limit. This achieves a finer granularity
of logs and can yield more efficient binlog disk usage under certain borderline workloads.

Example:

binlog_max_log_size = 16M

11.5.8 binlog_path

Binary log (aka transaction log) files path. Optional, default is build-time configured data directory.

Binary logs are used for crash recovery of RT index data, and also of attributes updates of plain disk indices that would
otherwise only be stored in RAM until flush. When logging is enabled, every transaction COMMIT-ted into RT index
gets written into a log file. Logs are then automatically replayed on startup after an unclean shutdown, recovering the
logged changes.

binlog_path directive specifies the binary log files location. It should contain just the path; searchd will create
and unlink multiple binlog.* files in that path as necessary (binlog data, metadata, and lock files, etc).

Empty value disables binary logging. That improves performance, but puts RT index data at risk.

WARNING! It is strongly recommended to always explicitly define ‘binlog_path’ option in your config. Otherwise,
the default path, which in most cases is the same as working folder, may point to the folder with no write access (for
example, /usr/local/var/data). In this case, the searchd will not start at all.

Example:

binlog_path = # disable logging
binlog_path = /var/data # /var/data/binlog.001 etc will be created

11.5.9 client_timeout

Maximum time to wait between requests (in seconds) when using persistent connections. Optional, default is five
minutes.

Example:

client_timeout = 3600

218 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.5.10 collation_libc_locale

Server libc locale. Optional, default is C.

Specifies the libc locale, affecting the libc-based collations. Refer to Collations section for the details.

Example:

collation_libc_locale = fr_FR

11.5.11 collation_server

Default server collation. Optional, default is libc_ci.

Specifies the default collation used for incoming requests. The collation can be overridden on a per-query basis. Refer
to Collations section for the list of available collations and other details.

Example:

collation_server = utf8_ci

11.5.12 dist_threads

Max local worker threads to use for parallelizable requests (searching a distributed index; building a batch of snippets).
Optional, default is 0, which means to disable in-request parallelism.

Distributed index can include several local indexes. dist_threads lets you easily utilize multiple CPUs/cores for
that (previously existing alternative was to specify the indexes as remote agents, pointing searchd to itself and paying
some network overheads).

When set to a value N greater than 1, this directive will create up to N threads for every query, and schedule the specific
searches within these threads. For example, if there are 7 local indexes to search and dist_threads is set to 2, then 2
parallel threads would be created: one that sequentially searches 4 indexes, and another one that searches the other 3
indexes.

In case of CPU bound workload, setting dist_threads to 1x the number of cores is advised (creating more threads
than cores will not improve query time). In case of mixed CPU/disk bound workload it might sometimes make sense
to use more (so that all cores could be utilizes even when there are threads that wait for I/O completion).

Building a batch of snippets with load_files flag enabled can also be parallelized. Up to dist_threads threads
are be created to process those files. That speeds up snippet extraction when the total amount of document data to
process is significant (hundreds of megabytes).

Example:

index dist_test
{

type = distributed
local = chunk1
local = chunk2
local = chunk3
local = chunk4

}

...

dist_threads = 4

11.5. searchd program configuration options 219

Manticore Search Documentation, Release 2.6.1

11.5.13 expansion_limit

The maximum number of expanded keywords for a single wildcard. Optional, default is 0 (no limit).

When doing substring searches against indexes built with dict = keywords enabled, a single wildcard may po-
tentially result in thousands and even millions of matched keywords (think of matching ‘a*’ against the entire Oxford
dictionary). This directive lets you limit the impact of such expansions. Setting expansion_limit = N restricts
expansions to no more than N of the most frequent matching keywords (per each wildcard in the query).

Example:

expansion_limit = 16

11.5.14 grouping_in_utc

Specifies whether timed grouping in API and SphinxQL will be calculated in local timezone, or in UTC. Optional,
default is 0 (means ‘local tz’).

By default all ‘group by time’ expressions (like group by day, week, month and year in API, also group by day, month,
year, yearmonth, yearmonthday in SphinxQL) is done using local time. I.e. when you have docs with attributes timed
13:00 utc and 15:00 utc - in case of grouping they both will fall into facility group according to your local tz
setting. Say, if you live in utc, it will be one day, but if you live in utc+10, then these docs will be matched into
different group by day facility groups (since 13:00 utc in UTC+10 tz 23:00 local time, but 15:00 is 01:00 of the
next day). Sometimes such behavior is unacceptable, and it is desirable to make time grouping not dependent from
timezone. Of course, you can run the daemon with defined global TZ env variable, but it will affect not only grouping,
but also timestamping in the logs, which may be also undesirable. Switching ‘on’ this option (either in config, either
using set global statement in sphinxql) will cause all time grouping expressions to be calculated in UTC, leaving the
rest of time-depentend functions (i.e. logging of the daemon) in local TZ.

11.5.15 ha_period_karma

Agent mirror statistics window size, in seconds. Optional, default is 60.

For a distributed index with agent mirrors in it (see more in remote agents), master tracks several different per-mirror
counters. These counters are then used for failover and balancing. (Master picks the best mirror to use based on the
counters.) Counters are accumulated in blocks of ha_period_karma seconds.

After beginning a new block, master may still use the accumulated values from the previous one, until the new one
is half full. Thus, any previous history stops affecting the mirror choice after 1.5 times ha_period_karma seconds at
most.

Despite that at most 2 blocks are used for mirror selection, upto 15 last blocks are actually stored, for instrumentation
purposes. They can be inspected using SHOW AGENT STATUS statement.

Example:

ha_period_karma = 120

11.5.16 ha_ping_interval

Interval between agent mirror pings, in milliseconds. Optional, default is 1000.

For a distributed index with agent mirrors in it (see more in remote agents), master sends all mirrors a ping command
during the idle periods. This is to track the current agent status (alive or dead, network roundtrip, etc). The interval
between such pings is defined by this directive.

220 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

To disable pings, set ha_ping_interval to 0.

Example:

ha_ping_interval = 0

11.5.17 hostname_lookup

Hostnames renew strategy. By default, IP addresses of agent host names are cached at daemon start to avoid extra
flood to DNS. In some cases the IP can change dynamically (e.g. cloud hosting) and it might be desired to don’t cache
the IPs. Setting this option to ‘request’ disabled the caching and queries the DNS at each query. The IP addresses can
also be manually renewed with FLUSH HOSTNAMES command.

11.5.18 listen_backlog

TCP listen backlog. Optional, default is 5.

Windows builds currently can only process the requests one by one. Concurrent requests will be enqueued by the TCP
stack on OS level, and requests that can not be enqueued will immediately fail with “connection refused” message.
listen_backlog directive controls the length of the connection queue. Non-Windows builds should work fine with the
default value.

Example:

listen_backlog = 20

11.5.19 listen

This setting lets you specify IP address and port, or Unix-domain socket path, that searchd will listen on.

The informal grammar for listen setting is:

listen = (address ":" port | port | path) [":" protocol] ["_vip"]

I.e. you can specify either an IP address (or hostname) and port number, or just a port number, or Unix socket path. If
you specify port number but not the address, searchd will listen on all network interfaces. Unix path is identified
by a leading slash.

You can also specify a protocol handler (listener) to be used for connections on this socket. Supported protocol values
are ‘sphinx’ (Manticore 0.9.x API protocol) and ‘mysql41’ (MySQL protocol used since 4.1 upto at least 5.1). More
details on MySQL protocol support can be found in MySQL protocol support and SphinxQL section.

Adding a “_vip” suffix to a protocol (for instance “sphinx_vip” or “mysql41_vip”) makes all connections to that port
bypass the thread pool and always forcibly create a new dedicated thread. That’s useful for managing in case of a
severe overload when the daemon would either stall or not let you connect via a regular port.

Examples: ^

listen = localhost
listen = localhost:5000
listen = 192.168.0.1:5000
listen = /var/run/sphinx.s
listen = 9312
listen = localhost:9306:mysql41

11.5. searchd program configuration options 221

Manticore Search Documentation, Release 2.6.1

There can be multiple listen directives, searchd will listen for client connections on all specified ports and sockets.
If no listen directives are found then the server will listen on all available interfaces using the default SphinxAPI
port 9312, and also on default SphinxQL port 9306. Both port numbers are assigned by IANA (see http://www.iana.
org/assignments/port-numbers for details) and should therefore be available.

Unix-domain sockets are not supported on Windows.

11.5.20 log

Log file name. Optional, default is ‘searchd.log’. All searchd run time events will be logged in this file.

Also you can use the ‘syslog’ as the file name. In this case the events will be sent to syslog daemon. To use the syslog
option the sphinx must be configured ‘–with-syslog’ on building.

Example:

log = /var/log/searchd.log

11.5.21 max_batch_queries

Limits the amount of queries per batch. Optional, default is 32.

Makes searchd perform a sanity check of the amount of the queries submitted in a single batch when using multi-
queries. Set it to 0 to skip the check.

Example:

max_batch_queries = 256

11.5.22 max_children

Maximum amount of worker threads (or in other words, concurrent queries to run in parallel). Optional, default is 0
(unlimited) in workers=threads, or 1.5 times the CPU cores count in workers=thread_pool mode.

max_children imposes a hard limit on the number of threads working on user queries. There might still be additional
internal threads doing maintenance tasks, but when it comes to user queries, it is no more than max_children concurrent
threads (and queries) at all times.

Note that in workers=threads mode a thread is allocated for every connection rather than an active query. So when
there are 100 idle connections but only 2 active connections with currently running queries, that still accounts for 102
threads, all of them subject to max_children limit. So with a max_children set way too low, and pooled connections not
reused well enough on the application side, you can effectively DOS your own server. When the limit is reached, any
additional incoming connections will be dismissed with a temporary “maxed out” error immediately as they attempt to
connect. Thus, in threads mode you should choose the max_children limit rather carefully, with not just the concurrent
queries but also with potentially idle network connections in mind.

Now, in workers=thread_pool mode the network connections are separated from query processing, so in the example
above, 100 idle connections will all be handled by an internal network thread, and only the 2 actually active queries
will be subject to max_children limit. When the limit is reached, any additional incoming connections will still be
accepted, and any additional queries will get enqueued until there are free worker threads. The queries will only start
failing with a temporary. Thus, in thread_pool mode it makes little sense to raise max_children much higher than the
amount of CPU cores. Usually that will only hurt CPU contention and decrease the general throughput.

Example:

222 Chapter 11. Configuration reference

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Manticore Search Documentation, Release 2.6.1

max_children = 10

11.5.23 max_filters

Maximum allowed per-query filter count. Only used for internal sanity checks, does not directly affect RAM use or
performance. Optional, default is 256.

Example:

max_filters = 1024

11.5.24 max_filter_values

Maximum allowed per-filter values count. Only used for internal sanity checks, does not directly affect RAM use or
performance. Optional, default is 4096.

Example:

max_filter_values = 16384

11.5.25 max_packet_size

Maximum allowed network packet size. Limits both query packets from clients, and response packets from remote
agents in distributed environment. Only used for internal sanity checks, does not directly affect RAM use or perfor-
mance. Optional, default is 8M.

Example:

max_packet_size = 32M

11.5.26 mva_updates_pool

Shared pool size for in-memory MVA updates storage. Optional, default size is 1M.

This setting controls the size of the shared storage pool for updated MVA values. Specifying 0 for the size disable
MVA updates at all. Once the pool size limit is hit, MVA update attempts will result in an error. However, updates
on regular (scalar) attributes will still work. Due to internal technical difficulties, currently it is not possible to store
(flush) any updates on indexes where MVA were updated; though this might be implemented in the future. In the
meantime, MVA updates are intended to be used as a measure to quickly catchup with latest changes in the database
until the next index rebuild; not as a persistent storage mechanism.

Example:

mva_updates_pool = 16M

11.5.27 mysql_version_string

A server version string to return via MySQL protocol. Optional, default is empty (return Manticore version).

11.5. searchd program configuration options 223

Manticore Search Documentation, Release 2.6.1

Several picky MySQL client libraries depend on a particular version number format used by MySQL, and moreover,
sometimes choose a different execution path based on the reported version number (rather than the indicated capa-
bilities flags). For instance, Python MySQLdb 1.2.2 throws an exception when the version number is not in X.Y.ZZ
format; MySQL .NET connector 6.3.x fails internally on version numbers 1.x along with a certain combination of
flags, etc. To workaround that, you can use mysql_version_string directive and have searchd report a
different version to clients connecting over MySQL protocol. (By default, it reports its own version.)

Example:

mysql_version_string = 5.0.37

11.5.28 net_workers

Number of network threads for workers=thread_pool mode, default is 1.

Useful for extremely high query rates, when just 1 thread is not enough to manage all the incoming queries.

11.5.29 net_wait_tm

Control busy loop interval of a network thread for workers=thread_pool mode, default is 1, might be set to -1, 0,
positive integer.

In case daemon configured as pure master and routes requests to agents it is important to handle requests without
delays and do not allow net-thread to sleep or cut out from CPU. Here is busy loop to do that. After incoming request,
network thread use CPU poll for 10 * net_wait_tm milliseconds in case net_wait_tm is positive number or
polls only with CPU in case net_wait_tm is 0. Also busy loop might be disabled with net_wait_tm = -1 -
this way poller set timeout of 1ms for system poll call.

11.5.30 net_throttle_accept net_throttle_action

Control network thread for workers=thread_pool mode, default is 0.

These options define how many clients got accepted and how many requests processed on each iteration of network
loop, in case of value above zero. Zero value means do not constrain network loop. These options might help to fine
tune network loop throughput at high load scenario.

11.5.31 ondisk_attrs_default

Instance-wide defaults for ondisk_attrs directive. Optional, default is 0 (all attributes are loaded in memory). This
directive lets you specify the default value of ondisk_attrs for all indexes served by this copy of searchd. Per-index
directives take precedence, and will overwrite this instance-wide default value, allowing for fine-grain control.

11.5.32 persistent_connections_limit

The maximum # of simultaneous persistent connections to remote persistent agents. Each time connecting agent
defined under ‘agent_persistent’ we try to reuse existing connection (if any), or connect and save the connection for
the future. However we can’t hold unlimited # of such persistent connections, since each one holds a worker on agent
size (and finally we’ll receive the ‘maxed out’ error, when all of them are busy). This very directive limits the number.
It affects the num of connections to each agent’s host, across all distributed indexes.

It is reasonable to set the value equal or less than max_children option of the agents.

Example:

224 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

persistent_connections_limit = 29 # assume that each host of agents has max_children
→˓= 30 (or 29).

11.5.33 pid_file

searchd process ID file name. Mandatory.

PID file will be re-created (and locked) on startup. It will contain head daemon process ID while the daemon is
running, and it will be unlinked on daemon shutdown. It’s mandatory because Manticore uses it internally for a
number of things: to check whether there already is a running instance of searchd; to stop searchd; to notify it
that it should rotate the indexes. Can also be used for different external automation scripts.

Example:

pid_file = /var/run/searchd.pid

11.5.34 predicted_time_costs

Costs for the query time prediction model, in nanoseconds. Optional, default is “doc=64, hit=48, skip=2048,
match=64” (without the quotes).

Terminating queries before completion based on their execution time (via either SetMaxQueryTime() API call, or SE-
LECT . . . OPTION max_query_time SphinxQL statement) is a nice safety net, but it comes with an inborn drawback:
indeterministic (unstable) results. That is, if you repeat the very same (complex) search query with a time limit several
times, the time limit will get hit at different stages, and you will get different result sets.

There is a new option, SELECT . . . OPTION max_predicted_time, that lets you limit the query time and get sta-
ble, repeatable results. Instead of regularly checking the actual current time while evaluating the query, which is
indeterministic, it predicts the current running time using a simple linear model instead:

predicted_time =
doc_cost * processed_documents +
hit_cost * processed_hits +
skip_cost * skiplist_jumps +
match_cost * found_matches

The query is then terminated early when the predicted_time reaches a given limit.

Of course, this is not a hard limit on the actual time spent (it is, however, a hard limit on the amount of processing
work done), and a simple linear model is in no way an ideally precise one. So the wall clock time may be either below
or over the target limit. However, the error margins are quite acceptable: for instance, in our experiments with a 100
msec target limit the majority of the test queries fell into a 95 to 105 msec range, and all of the queries were in a 80 to
120 msec range. Also, as a nice side effect, using the modeled query time instead of measuring actual run time results
in somewhat less gettimeofday() calls, too.

No two server makes and models are identical, so predicted_time_costs directive lets you configure the costs
for the model above. For convenience, they are integers, counted in nanoseconds. (The limit in max_predicted_time is
counted in milliseconds, and having to specify cost values as 0.000128 ms instead of 128 ns is somewhat more error
prone.) It is not necessary to specify all 4 costs at once, as the missed one will take the default values. However, we
strongly suggest to specify all of them, for readability.

Example:

predicted_time_costs = doc=128, hit=96, skip=4096, match=128

11.5. searchd program configuration options 225

Manticore Search Documentation, Release 2.6.1

11.5.35 preopen_indexes

Whether to forcibly preopen all indexes on startup. Optional, default is 1 (preopen everything).

When set to 1, this directive overrides and enforces preopen on all indexes. They will be preopened, no matter what is
the per-index preopen setting. When set to 0, per-index settings can take effect. (And they default to 0.)

Pre-opened indexes avoid races between search queries and rotations that can cause queries to fail occasionally. They
also make searchd use more file handles. In most scenarios it’s therefore preferred and recommended to preopen
indexes.

Example:

preopen_indexes = 1

11.5.36 qcache_max_bytes

Integer, in bytes. The maximum RAM allocated for cached result sets. Default is 0, meaning disabled. Refer to query
cache for details.

qcache_max_bytes = 16777216

11.5.37 qcache_thresh_msec

Integer, in milliseconds. The minimum wall time threshold for a query result to be cached. Defaults to 3000, or 3
seconds. 0 means cache everything. Refer to query cache for details.

11.5.38 qcache_ttl_sec

Integer, in seconds. The expiration period for a cached result set. Defaults to 60, or 1 minute. The minimum possible
value is 1 second. Refer to query cache for details.

11.5.39 query_log_format

Query log format. Optional, allowed values are ‘plain’ and ‘sphinxql’, default is ‘plain’.

The default one logs queries in a custom text format. The ‘sphinxql’ logs valid SphinxQL statements. This directive
allows to switch between the two formats on search daemon startup. The log format can also be altered on the fly,
using SET GLOBAL query_log_format=sphinxql syntax. Refer to Query log formats for more discussion
and format details.

Example:

query_log_format = sphinxql

11.5.40 query_log_min_msec

Limit (in milliseconds) that prevents the query from being written to the query log. Optional, default is 0 (all queries
are written to the query log). This directive specifies that only queries with execution times that exceed the specified
limit will be logged.

226 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.5.41 query_log

Query log file name. Optional, default is empty (do not log queries). All search queries will be logged in this file. The
format is described in Query log formats. In case of ‘plain’ format, you can use the ‘syslog’ as the path to the log file.
In this case all search queries will be sent to syslog daemon with LOG_INFO priority, prefixed with ‘[query]’ instead
of timestamp. To use the syslog option the sphinx must be configured ‘–with-syslog’ on building.

Example:

query_log = /var/log/query.log

11.5.42 query_log_mode

By default the searchd and query log files are created with 600 permission, so only the user under which daemon runs
and root users can read the log files. query_log_mode allows settings a different permission. This can be handy to
allow other users to be able to read the log files (for example monitoring solutions running on non-root users).

Example:

query_log_mode = 666

11.5.43 queue_max_length

Maximum pending queries queue length for workers=thread_pool mode, default is 0 (unlimited).

In case of high CPU load thread pool queries queue may grow all the time. This directive lets you constrain queue
length and start rejecting incoming queries at some point with a “maxed out” message.

11.5.44 read_buffer

Per-keyword read buffer size. Optional, default is 256K.

For every keyword occurrence in every search query, there are two associated read buffers (one for document list and
one for hit list). This setting lets you control their sizes, increasing per-query RAM use, but possibly decreasing IO
time.

Example:

read_buffer = 1M

11.5.45 read_timeout

Network client request read timeout, in seconds. Optional, default is 5 seconds. searchd will forcibly close the
client connections which fail to send a query within this timeout.

Example:

read_timeout = 1

11.5. searchd program configuration options 227

Manticore Search Documentation, Release 2.6.1

11.5.46 read_unhinted

Unhinted read size. Optional, default is 32K.

When querying, some reads know in advance exactly how much data is there to be read, but some currently do not.
Most prominently, hit list size in not currently known in advance. This setting lest you control how much data to
read in such cases. It will impact hit list IO time, reducing it for lists larger than unhinted read size, but raising it for
smaller lists. It will not affect RAM use because read buffer will be already allocated. So it should be not greater than
read_buffer.

Example:

read_unhinted = 32K

11.5.47 rt_flush_period

RT indexes RAM chunk flush check period, in seconds. Optional, default is 10 hours.

Actively updated RT indexes that however fully fit in RAM chunks can result in ever-growing binlogs, impacting disk
use and crash recovery time. With this directive the search daemon performs periodic flush checks, and eligible RAM
chunks can get saved, enabling consequential binlog cleanup. See Binary logging for more details.

Example:

rt_flush_period = 3600 # 1 hour

11.5.48 rt_merge_iops

A maximum number of I/O operations (per second) that the RT chunks merge thread is allowed to start. Optional,
default is 0 (no limit).

This directive lets you throttle down the I/O impact arising from the OPTIMIZE statements. It is guaranteed that all
the RT optimization activity will not generate more disk iops (I/Os per second) than the configured limit. Modern
SATA drives can perform up to around 100 I/O operations per second, and limiting rt_merge_iops can reduce search
performance degradation caused by merging.

Example:

rt_merge_iops = 40

11.5.49 rt_merge_maxiosize

A maximum size of an I/O operation that the RT chunks merge thread is allowed to start. Optional, default is 0 (no
limit).

This directive lets you throttle down the I/O impact arising from the OPTIMIZE statements. I/Os bigger than this
limit will be broken down into 2 or more I/Os, which will then be accounted as separate I/Os with regards to the
rt_merge_iops limit. Thus, it is guaranteed that all the optimization activity will not generate more than (rt_merge_iops
* rt_merge_maxiosize) bytes of disk I/O per second.

Example:

rt_merge_maxiosize = 1M

228 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

11.5.50 seamless_rotate

Prevents searchd stalls while rotating indexes with huge amounts of data to precache. Optional, default is 1 (enable
seamless rotation). On Windows systems seamless rotation is disabled by default.

Indexes may contain some data that needs to be precached in RAM. At the moment, .spa, .spi and .spm files are
fully precached (they contain attribute data, MVA data, and keyword index, respectively.) Without seamless rotate,
rotating an index tries to use as little RAM as possible and works as follows:

1. new queries are temporarily rejected (with “retry” error code);

2. searchd waits for all currently running queries to finish;

3. old index is deallocated and its files are renamed;

4. new index files are renamed and required RAM is allocated;

5. new index attribute and dictionary data is preloaded to RAM;

6. searchd resumes serving queries from new index.

However, if there’s a lot of attribute or dictionary data, then preloading step could take noticeable time - up to several
minutes in case of preloading 1-5+ GB files.

With seamless rotate enabled, rotation works as follows:

1. new index RAM storage is allocated;

2. new index attribute and dictionary data is asynchronously preloaded to RAM;

3. on success, old index is deallocated and both indexes’ files are renamed;

4. on failure, new index is deallocated;

5. at any given moment, queries are served either from old or new index copy.

Seamless rotate comes at the cost of higher peak memory usage during the rotation (because both old and new copies
of .spa/.spi/.spm data need to be in RAM while preloading new copy). Average usage stays the same.

Example:

seamless_rotate = 1

11.5.51 shutdown_timeout

searchd –stopwait wait time, in seconds. Optional, default is 3 seconds.

When you run searchd –stopwait your daemon needs to perform some activities before stopping like finishing queries,
flushing RT RAM chunk, flushing attributes and updating binlog. And it requires some time. searchd –stopwait will
wait up to shutdown_time seconds for daemon to finish its jobs. Suitable time depends on your index size and load.

Example:

shutdown_timeout = 5 # wait for up to 5 seconds

11.5.52 snippets_file_prefix

A prefix to prepend to the local file names when generating snippets. Optional, default is empty.

This prefix can be used in distributed snippets generation along with load_files or load_files_scattered
options.

11.5. searchd program configuration options 229

Manticore Search Documentation, Release 2.6.1

Note how this is a prefix, and not a path! Meaning that if a prefix is set to “server1” and the request refers to “file23”,
searchd will attempt to open “server1file23” (all of that without quotes). So if you need it to be a path, you have to
mention the trailing slash.

Note also that this is a local option, it does not affect the agents anyhow. So you can safely set a prefix on a master
server. The requests routed to the agents will not be affected by the master’s setting. They will however be affected by
the agent’s own settings.

This might be useful, for instance, when the document storage locations (be those local storage or NAS mountpoints)
are inconsistent across the servers.

Example:

snippets_file_prefix = /mnt/common/server1/

11.5.53 sphinxql_state

Path to a file where current SphinxQL state will be serialized.

On daemon startup, this file gets replayed. On eligible state changes (eg. SET GLOBAL), this file gets rewritten
automatically. This can prevent a hard-to-diagnose problem: If you load UDF functions, but Manticore crashes, when
it gets (automatically) restarted, your UDF and global variables will no longer be available; using persistent state helps
a graceful recovery with no such surprises.

Example:

sphinxql_state = uservars.sql

11.5.54 sphinxql_timeout

Maximum time to wait between requests (in seconds) when using sphinxql interface. Optional, default is 15 minutes.

Example:

sphinxql_timeout = 900

11.5.55 subtree_docs_cache

Max common subtree document cache size, per-query. Optional, default is 0 (disabled).

Limits RAM usage of a common subtree optimizer (see Multi-queries). At most this much RAM will be spent to
cache document entries per each query. Setting the limit to 0 disables the optimizer.

Example:

subtree_docs_cache = 8M

11.5.56 subtree_hits_cache

Max common subtree hit cache size, per-query. Optional, default is 0 (disabled).

Limits RAM usage of a common subtree optimizer (see Multi-queries). At most this much RAM will be spent to
cache keyword occurrences (hits) per each query. Setting the limit to 0 disables the optimizer.

Example:

230 Chapter 11. Configuration reference

Manticore Search Documentation, Release 2.6.1

subtree_hits_cache = 16M

11.5.57 thread_stack

Per-thread stack size. Optional, default is 1M.

In the workers = threads mode, every request is processed with a separate thread that needs its own stack space.
By default, 1M per thread are allocated for stack. However, extremely complex search requests might eventually
exhaust the default stack and require more. For instance, a query that matches a thousands of keywords (either directly
or through term expansion) can eventually run out of stack. searchd attempts to estimate the expected stack use,
and blocks the potentially dangerous queries. To process such queries, you can either set the thread stack size by using
the thread_stack directive (or switch to a different workers setting if that is possible).

A query with N levels of nesting is estimated to require approximately 30+0.16*N KB of stack, meaning that the
default 64K is enough for queries with upto 250 levels, 150K for upto 700 levels, etc. If the stack size limit is not met,
searchd fails the query and reports the required stack size in the error message.

Example:

thread_stack = 256K

11.5.58 unlink_old

Whether to unlink .old index copies on successful rotation. Optional, default is 1 (do unlink).

Example:

unlink_old = 0

11.5.59 watchdog

Threaded server watchdog. Optional, default is 1 (watchdog enabled).

A crashed query in threads multi-processing mode (:ref:`workers` = threads) can take down the entire
server. With watchdog feature enabled, searchd additionally keeps a separate lightweight process that monitors the
main server process, and automatically restarts the latter in case of abnormal termination. Watchdog is enabled by
default.

Example:

watchdog = 0 # disable watchdog

11.5.60 workers

Multi-processing mode (MPM). Optional; allowed values are thread_pool, and threads. Default is thread_pool.

Lets you choose how searchd processes multiple concurrent requests. The possible values are:

• threads

• A new dedicated thread is created on every incoming network connection. Subsequent queries on that connection
are handled by that thread. When a client disconnected, the thread gets killed.

• thread_pool

11.5. searchd program configuration options 231

Manticore Search Documentation, Release 2.6.1

• A worker threads pool is created on daemon startup. An internal network thread handles all the incoming
network connections. Subsequent queries on any connection are then put into a queue, and processed in order
by the first avaialble worker thread from the pool. No threads are normally created or killed, neither for new
connections, nor for new queries. Network thread uses epoll() and poll() on Linux, kqueue() on Mac OS/BSD,
and WSAPoll on Windows (Vista and later). This is the default mode.

Thread pool is a newer, better, faster implementation of threads mode which does not suffer from overheads of creating
a new thread per every new connection and managing a lot of parallel threads. We still retain workers=threads for the
transition period, but thread pool is scheduled to become the only MPM mode.

Example:

workers = thread_pool

232 Chapter 11. Configuration reference

CHAPTER 12

Reporting bugs

Unfortunately, Manticore is not yet 100% bug free (even though we’re working hard towards that), so you might
occasionally run into some issues.

Reporting as much as possible about each bug is very important - because to fix it, we need to be able either to
reproduce and fix the bug, or to deduce what’s causing it from the information that you provide. So here are some
instructions on how to do that.

12.1 Bug-tracker

Please issue the Github issue tracker https://github.com/manticoresoftware/manticore/issues. Create a new ticket and
describe your bug in details so both you and developers can save their time.

12.2 Crashes

In case of crashes we sometimes can get enough info to fix from backtrace.

Manticore tries to write crash backtrace to its log file. It may look like this:

./indexer(_Z12sphBacktraceib+0x2d6)[0x5d337e]

./indexer(_Z7sigsegvi+0xbc)[0x4ce26a]
/lib64/libpthread.so.0[0x3f75a0dd40]
/lib64/libc.so.6(fwrite+0x34)[0x3f74e5f564]
./indexer(_
→˓ZN27CSphCharsetDefinitionParser5ParseEPKcR10CSphVectorI14CSphRemapRange16CSphVe
ctorPolicyIS3_EE+0x5b)[0x51701b]
./indexer(_ZN13ISphTokenizer14SetCaseFoldingEPKcR10CSphString+0x62)[0x517e4c]
./indexer(_ZN17CSphTokenizerBase14SetCaseFoldingEPKcR10CSphString+0xbd)[0x518283]
./indexer(_ZN18CSphTokenizer_SBCSILb0EEC1Ev+0x3f)[0x5b312b]
./indexer(_Z22sphCreateSBCSTokenizerv+0x20)[0x51835c]
./indexer(_
→˓ZN13ISphTokenizer6CreateERK21CSphTokenizerSettingsPK17CSphEmbeddedFilesR10CSphS

(continues on next page)

233

https://github.com/manticoresoftware/manticore/issues

Manticore Search Documentation, Release 2.6.1

(continued from previous page)

tring+0x47)[0x5183d7]
./indexer(_Z7DoIndexRK17CSphConfigSectionPKcRK17SmallStringHash_TIS_EbP8_IO_
→˓FILE+0x494)[0x
4d31c8]
./indexer(main+0x1a17)[0x4d6719]
/lib64/libc.so.6(__libc_start_main+0xf4)[0x3f74e1d8a4]
./indexer(__gxx_personality_v0+0x231)[0x4cd779]

This is an example of a good backtrace - we can see mangled function names here.

But sometimes backtrace may look like this:

/opt/piler/bin/indexer[0x4c4919]
/opt/piler/bin/indexer[0x405cf0]
/lib/x86_64-linux-gnu/libpthread.so.0(+0xfcb0)[0x7fc659cb6cb0]
/opt/piler/bin/indexer[0x4237fd]
/opt/piler/bin/indexer[0x491de6]
/opt/piler/bin/indexer[0x451704]
/opt/piler/bin/indexer[0x40861a]
/opt/piler/bin/indexer[0x40442c]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed)[0x7fc6588aa76d]
/opt/piler/bin/indexer[0x405b89]

Developers can get nothing useful from those cryptic numbers. They’re ordinary humans and want to see function
names. To help them you need to provide symbols (function and variable names). If you’ve installed sphinx by
building from the sources, run the following command over your binary:

nm -n indexer > indexer.sym

Attach this file to bug report along with backtrace. You should however ensure that the binary is not stripped. Our
official binary packages should be fine. (That, or we have the symbols stored.) However, if you manually build
Manticore from the source tarball, do not run strip utility on that binary, and/or do not let your build/packaging
system do that!

12.3 Uploading your data

To fix your bug developers often need to reproduce it on their machines. To do this they need your sphinx.conf, index
files, binlog (if present), sometimes data to index (like SQL tables or XMLpipe2 data files) and queries.

Attach your data to ticket. In case it’s too big to attach ask developers and they give you an address to write-only FTP
created exactly for such puproses.

234 Chapter 12. Reporting bugs

CHAPTER 13

Release notes

13.1 Version 2.6.1 GA, 26 January 2018

13.1.1 Improvements

• agent_retry_count in case of agents with mirrors gives the value of retries per mirror instead of per agent, the
total retries per agent being agent_retry_count*mirrors.

• agent_retry_count can now be specified per index, overriding global value. An alias mirror_retry_count is
added.

• a retry_count can be specified in agent definition and the value represents retries per agent

• Percolate Queries are now in HTTP JSON API at /json/pq.

• Added -h and -v options (help and version) to executables

• morphology_skip_fields support for Real-Time indexes

13.1.2 Bugfixes

• a40b079 fixed ranged-main-query to correctly work with sql_range_step when used at MVA field

• f2f5375 fixed issue with blackhole system loop hung and blackhole agents seems disconnected

• 84e1f54 fixed query id to be consistent, fixed duplicated id for stored queries

• 1948423 fixed daemon crash on shutdown from various states

• 9a706b 3495fd7 timeouts on long queries

• 3359bcd8 refactored master-agent network polling on kqueue-based systems (Mac OS X, BSD).

235

https://github.com/manticoresoftware/manticore/commit/a40b0793feff65e40d10062568d9847c08d10f57
https://github.com/manticoresoftware/manticore/commit/f2f53757db45bcfb1544263ce0817e856656a621
https://github.com/manticoresoftware/manticore/commit/84e1f54aef25e0fce98870ad2dd784db5116f1d6
https://github.com/manticoresoftware/manticore/commit/19484231814fcb82b21763a3a4a9f45adc6b2d40
https://github.com/manticoresoftware/manticore/commit/9a706b499a1d61a90076065a1a703029d49db958
https://github.com/manticoresoftware/manticore/commit/3495fd70cba8846b1a50d55d6679b039414c3d2a
https://github.com/manticoresoftware/manticore/commit/3359bcd89b4f79a645fe84b8cf8616ce0addff02

Manticore Search Documentation, Release 2.6.1

13.2 Version 2.6.0, 29 December 2017

13.2.1 Features and improvements

• HTTP JSON: JSON queries can now do equality on attributes, MVA and JSON attributes can be used in inserts
and updates, updates and deletes via JSON API can be performed on distributed indexes

• Percolate Queries

• Removed support for 32-bit docids from the code. Also removed all the code that converts/loads legacy indexes
with 32-bit docids.

• Morphology only for certain fields . A new index directive morphology_skip_fields allows defining a list of
fields for which morphology does not apply.

• expand_keywords can now be a query runtime directive set using the OPTION statement

13.2.2 Bugfixes

• 0cfae4c fixed crash on debug build of daemon (and m.b. UB on release) when built with rlp

• 324291e fixed RT index optimize with progressive option enabled that merges kill-lists with wrong order

• ac0efee minor crash on mac

• lots of minor fixes after thorough static code analysis

• other minor bugfixes

13.2.3 Upgrade

In this release we’ve changed internal protocol used by masters and agents to speak with each other. In case you run
Manticoresearch in a distributed environment with multiple instances make sure your first upgrade agents, then the
masters.

13.3 Version 2.5.1, 23 November 2017

13.3.1 Features and improvements

• JSON queries on HTTP API protocol. Supported search, insert, update, delete, replace operations. Data manip-
ulation commands can be also bulked, also there are some limitations currently as MVA and JSON attributes
can’t be used for inserts, replaces or updates.

• RELOAD INDEXES command

• FLUSH LOGS command

• SHOW THREADS can show progress of optimize, rotation or flushes.

• GROUP N BY work correctly with MVA attributes

• blackhole agents are run on separate thread to not affect master query anymore

• implemented reference count on indexes, to avoid stalls caused by rotations and high load

• SHA1 hashing implemented, not exposed yet externally

236 Chapter 13. Release notes

https://github.com/manticoresoftware/manticore/issues/7
https://github.com/manticoresoftware/manticore/issues/8
https://github.com/manticoresoftware/manticore/commit/0cfae4c
https://github.com/manticoresoftware/manticore/commit/324291e
https://github.com/manticoresoftware/manticore/commit/ac0efee

Manticore Search Documentation, Release 2.6.1

• fixes for compiling on FreeBSD, macOS and Alpine

13.3.2 Bugfixes

• 989752b filter regression with block index

• b1c3864 rename PAGE_SIZE -> ARENA_PAGE_SIZE for compatibility with musl

• f2133cc disable googletests for cmake < 3.1.0

• f30ec53 failed to bind socket on daemon restart

• 0807240 fixed crash of daemon on shutdown

• 3e3acc3 fixed show threads for system blackhole thread

• 262c3fe Refactored config check of iconv, fixes building on FreeBSD and Darwin

13.4 Version 2.4.1 GA, 16 October 2017

13.4.1 Features and improvements

• OR operator in WHERE clause between attribute filters

• Maintenance mode (SET MAINTENANCE=1)

• CALL KEYWORDS available on distributed indexes

• Grouping in UTC

• query_log_mode for custom log files permissions

• Field weights can be zero or negative

• max_query_time can now affect full-scans

• added net_wait_tm, net_throttle_accept net_throttle_action and net_throttle_accept net_throttle_action for net-
work thread fine tuning (in case of workers=thread_pool)

• COUNT DISTINCT works with facet searches

• IN can be used with JSON float arrays

• multi-query optimization is not broken anymore by integer/float expressions

• SHOW META shows a multiplier row when multi-query optimization is used

13.4.2 Compiling

Manticore Search is built using cmake and the minimum gcc version required for compiling is 4.7.2.

13.4.3 Folders and service

Manticore Search runs under manticore user.

Default data folder is now /var/lib/manticore/.

Default log folder is now /var/log/manticore/.

Default pid folder is now /var/run/manticore/.

13.4. Version 2.4.1 GA, 16 October 2017 237

https://github.com/manticoresoftware/manticore/commit/989752b
https://github.com/manticoresoftware/manticore/commit/b1c3864
https://github.com/manticoresoftware/manticore/commit/f2133cc
https://github.com/manticoresoftware/manticore/commit/0839de7
https://github.com/manticoresoftware/manticore/commit/0807240
https://github.com/manticoresoftware/manticore/commit/3e3acc3
https://github.com/manticoresoftware/manticore/commit/262c3fe

Manticore Search Documentation, Release 2.6.1

13.4.4 Bugfixes

• a58c619 fixed SHOW COLLATION statement that breaks java connector

• 631cf4e fixed crashes on processing distributed indexes; added locks to distributed index hash; removed move
and copy operators from agent

• 942bec0 fixed crashes on processing distributed indexes due to parallel reconnects

• e5c1ed2 fixed crash at crash handler on store query to daemon log

• 4a4bda5 fixed a crash with pooled attributes in multiqueries

• 3873bfb fixed reduced core size by prevent index pages got included into core file

• 11e6254 fixed searchd crashes on startup when invalid agents are specified

• 4ca6350 fixed indexer reports error in sql_query_killlist query

• 123a9f0 fixed fold_lemmas=1 vs hit count

• cb99164 fixed inconsistent behavior of html_strip

• e406761 fixed optimize rt index loose new settings; fixed optimize with sync option lock leaks;

• 86aeb82 Fixed processing erroneous multiqueries

• 2645230 fixed result set depends on multi-query order

• 72395d9 fixed daemon crash on multi-query with bad query

• f353326 fixed shared to exclusive lock

• 3754785 fixed daemon crash for query without indexes

• 29f360e fixed dead lock of daemon

13.5 Version 2.3.3, 06 July 2017

• Manticore branding

238 Chapter 13. Release notes

https://github.com/manticoresoftware/manticore/commit/a58c619
https://github.com/manticoresoftware/manticore/commit/631cf4e
https://github.com/manticoresoftware/manticore/commit/942bec0
https://github.com/manticoresoftware/manticore/commit/e5c1ed2
https://github.com/manticoresoftware/manticore/commit/4a4bda5
https://github.com/manticoresoftware/manticore/commit/3873bfb
https://github.com/manticoresoftware/manticore/commit/11e6254
https://github.com/manticoresoftware/manticore/commit/4ca6350
https://github.com/manticoresoftware/manticore/commit/123a9f0
https://github.com/manticoresoftware/manticore/commit/cb99164
https://github.com/manticoresoftware/manticore/commit/e406761
https://github.com/manticoresoftware/manticore/commit/86aeb82
https://github.com/manticoresoftware/manticore/commit/2645230
https://github.com/manticoresoftware/manticore/commit/72395d9
https://github.com/manticoresoftware/manticore/commit/f353326
https://github.com/manticoresoftware/manticore/commit/3754785
https://github.com/manticoresoftware/manticore/commit/29f360e

	Introduction
	About
	Manticore features
	Where to get Manticore
	License
	Credits

	Installation
	Installing Manticore packages on Debian and Ubuntu
	Installing Manticore packages on RedHat and CentOS
	Installing Manticore on Windows
	Running Manticore Search in a Docker Container
	Compiling Manticore from source
	Quick Manticore usage tour

	Indexing
	Data sources
	Full-text fields
	Attributes
	MVA (multi-valued attributes)
	Indexes
	Restrictions on the source data
	Charsets, case folding, translation tables, and replacement rules
	SQL data sources (MySQL, PostgreSQL)
	xmlpipe2 data source
	TSV/CSV data source
	Live index updates
	Delta index updates
	Index merging

	Real-time indexes
	RT indexes overview
	Known caveats with RT indexes
	RT index internals
	Binary logging

	Searching
	Matching modes
	Boolean query syntax
	Extended query syntax
	Search results ranking
	Expressions, functions, and operators
	Sorting modes
	Grouping (clustering) search results
	Distributed searching
	Query log formats
	MySQL protocol support and SphinxQL
	Multi-queries
	Collations
	Query cache
	MySQL storage engine (SphinxSE)
	Percolate query

	Extending
	UDFs (User Defined Functions)
	Plugins
	Ranker plugins

	Command line tools reference
	indexer command reference
	indextool command reference
	searchd command reference
	spelldump command reference
	wordbreaker command reference

	SphinxQL reference
	ALTER syntax
	ATTACH INDEX syntax
	BEGIN, COMMIT, and ROLLBACK syntax
	BEGIN syntax
	CALL KEYWORDS syntax
	CALL PQ syntax
	CALL QSUGGEST syntax
	CALL SNIPPETS syntax
	CALL SUGGEST syntax
	Comment syntax
	CREATE FUNCTION syntax
	CREATE PLUGIN syntax
	DELETE syntax
	DESCRIBE syntax
	DROP FUNCTION syntax
	DROP PLUGIN syntax
	FLUSH ATTRIBUTES syntax
	FLUSH HOSTNAMES syntax
	FLUSH LOGS syntax
	FLUSH RAMCHUNK syntax
	FLUSH RTINDEX syntax
	INSERT and REPLACE syntax
	List of SphinxQL reserved keywords
	Multi-statement queries
	OPTIMIZE INDEX syntax
	RELOAD INDEX syntax
	RELOAD INDEXES syntax
	RELOAD PLUGINS syntax
	REPLACE syntax
	ROLLBACK syntax
	SELECT syntax
	SELECT @@system_variable syntax
	SET syntax
	SET TRANSACTION syntax
	SHOW AGENT STATUS
	SHOW CHARACTER SET syntax
	SHOW COLLATION syntax
	SHOW DATABASES syntax
	SHOW INDEX SETTINGS syntax
	SHOW INDEX STATUS syntax
	SHOW META syntax
	SHOW PLAN syntax
	SHOW PLUGINS syntax
	SHOW PROFILE syntax
	SHOW STATUS syntax
	SHOW TABLES syntax
	SHOW THREADS syntax
	SHOW VARIABLES syntax
	SHOW WARNINGS syntax
	TRUNCATE RTINDEX syntax
	UPDATE syntax

	HTTP API reference
	/search API
	/sql API
	/json API

	API reference
	General API functions
	General query settings
	Full-text search query settings
	Result set filtering settings
	GROUP BY settings
	Querying
	Additional functionality
	Persistent connections

	Configuration reference
	Common section configuration options
	Data source configuration options
	Index configuration options
	indexer program configuration options
	searchd program configuration options

	Reporting bugs
	Bug-tracker
	Crashes
	Uploading your data

	Release notes
	Version 2.6.1 GA, 26 January 2018
	Version 2.6.0, 29 December 2017
	Version 2.5.1, 23 November 2017
	Version 2.4.1 GA, 16 October 2017
	Version 2.3.3, 06 July 2017

